After Euro BCM, What are the first lessons from iPOD study?

R Azar C H Dunkerque

(avec la courtoisie de FMC)

Plan

1 Hyperhydratation en dialyse péritonéale

Etude IPOD-PD study: The initiative of patient outcomes in peritoneal dialysis study

ADEMEX, a Prospective, Randomized, Controlled Trial

= Effects of Increased Peritoneal Clearances on Mortality Rates in Peritoneal Dialysis:

JASN

Paniagua, R. et al. J Am Soc Nephrol 2002;13:1307-1320

Effect of Dialysis Dose and Membrane Flux in Maintenance Hemodialysis

N Engl J Med, Vol. 347, No. 26 · December 19, 2002

The four groups are defined as: group I, <1265 mL/24 h/1.73 m²; group II, 1265 to 1570 mL/24 h/1.73 m²; group III, 1570 to 2035 mL/24 h/1.73 m²; and group IV, > 2035 mL/24 h/1.73 m².

The four groups are defined as: group I, <130 mmol/24 h/1.73 m 2 ; group II, 130 to 181 mmol/24 h/1.73 m 2 ; group III, 181 to 232 mmol/24 h/1.73 m 2 ; and group IV,> 232 mmol/24 h/1.73 m 2 .

Kidney International (2001) 60, 767-776

Recommandations officielles : quelles cibles?

ISPD

Ultrafiltration is predictive of survival in anuric APD patients

Study (EAPOS): baseline ultrafiltration below 750 mL/day was associated with poorer survival

Ultrafiltration analyzed as a continuous variable was a significant factor for survival in the time-dependent analysis of anuric patients in NECOSAD.

ISPD Guidelines. Perit Dial Int 2006; 26:520-522

ERA EDTA

The minimum peritoneal target for net ultrafiltration in anuric patients is 1.0 L/day. (Evidence level B)

The presence of residual renal function can compensate when these peritoneal targets are not achieved. (Evidence level C)

Nephrology Dialysis Transplantation, 20, suppl_9, 1 December 2005

Nouvelles données sur le Sel : Rôle du sel "non osmotique"?....

- IRM du mollet
- Patient en HD
- DT2

Nouvelles données sur le Sel : Rôle du sel "non osmotique"?....

Etude de Cohorte de patients IRC ND

- Pas d'association entre
 « Na+ non osmotique » et
 DFG
- Pas d'association avec l'OH (BCM)

Mais association indépendante avec l'HVG....

Sodium extraction, GFR, hydration and CKD

Covariates associated with Left Ventricular Mass

	Coefficient B	p value
Gender	- 0.30	< 0.01
Height	+ 0.33	
24h systolic BP	+0.13	< 0.01
Skin sodium [MRI]	+ 0.33	0.08
ОН [ВСМ]		< 0.01
zar (ocur)	+0.02	0.78

Skin sodium was not associated with GFR, OH [BCM]....

[Schneider MP, J Am Soc Nephrol 2017; 28: 1867-1876].

Figure 2. Modifiable and nonmodifiable factors influencing fluid status. BMI, body mass index. Y-L Kim. Semin Nephrol 2017; 37: 43–53

Figure 1. Consequences of fluid overload in PD patients. CHF, congestive heart failure; LVDD, left ventricular diastolic dysfunction; LVH, left ventricular hypertrophy; PAH, pulmonary arterial hypertension; intima media thickness (IMT).

Relation inflammation, nutrition, fluid overload

	Albumin [g/L]						
	<35.0		35.0-40.0		>40.0		
	N Mean ± SD N Mean ± SI		Mean ± SD	N	Mean ± SD		
BMI [kg/m²]	314	25.0±4.6	333	26.3±4.9	302	26.5±4.8	
LTI [kg/m²]	311	13.1±3.1	329	13.5±3.2	300	14.2±3.5	
FTI [kg/m ²]	310	7.8±3.8	329	8.9±4.2	300	7.7±4.0	
FO [L]	314	2.9±2.6	333	1.6±2.1	302	1.0±1.7	
CRP [mg/L]	267	13.7±24.1	276	10.0±21.0	257	5.8 ±10.4	

Relation inflammation, nutrition, fluid overload

Axe Hyperhydratation et Inflammation

Fig. 3. Potential pathophysiological explanations of the fluid overload and inflammation axis. VCAM, vascular cell adhesion protein; UFR, ultrafiltration rate; IDH, intradialytic hypotension; Th-17, T-helper 17 ceiis.

Figure 5 | Dynamics of fluid status and inflammation and survival during 6-month follow-up. Surival probabilities and hazard ratios from a Cox proportional hazards model adjusted for age, gender, dialysis vintage, access type (arteriovenous vs. catheter access), region, body mass index, normalized protein catabolic rate, ultrafiltration rate (<10 ml/h/kg, 10–13 ml/h/kg, or >13 ml/h/kg), diabetes mellitus, congestive heart failure, peripheral vascular disease, cerebrovascular disease, and present malignancy.

Evaluation de la volémie

- Examen Clinique
- Pro-BNP (dysfunction et overload)
- · Echo pulmonaire
- Echocardiographie

- BIOIMPEDANCE MULTIFREQUENCY
 - Extracellular water (ECW)
 - Intracellular water (ICW)
 - Body water (TBW)

Principles of bioimpedance and bioimpedance spectroscopy

Initiative for Patient Outcomes in Dialysis – PD: IPOD-PD Study

Final Results

Study Facts

Study design

- observational, prospective
- 28 countries
- 135 centres
- 1092 incident PD patients
- up to 5 years follow-up

Study objectives

- Assessment of hydration status at baseline and during follow-up
- RRF, transport status, prescription, technique failure

Study treatment

The patients were treated according to the practice of the clinics and received the peritoneal solutions according to physician's decision

Protocol

Timelines

- Recruiting period end app. 2 years after inclusion of the first patient (FPI)
- After inclusion of the last patient (LPI) all patients were observed for 3 more years

Analysis population

BP = Baseline population

IPOD-PD study = Répartition géographique des patients

Centres included 7
Centres with at least 1 patient 7
Patient's included 46

n	1054
Age [years]	58.1 ±15.3
Sex (men) [%]	57.4
Height [cm]	166.0 ± 10.1
Weight [kg]	71.9 ± 16.2
Blood pressure (sys) [mmHg]	139.4 ± 21.7
Blood pressure (dias) [mmHg]	79.9 ± 12.8

Ethnic origin

Transport status at first assessment

Availability of transport status test by region

Region / Visit			At least 1 test is available		No test is available	
		n	%	n	%	N
	Month 1	167	24.6	512	75.4	679
Western Europe	Month 3	289	44.9	354	55.1	643
Luiope	Month 6	338	57.9	246	42.1	584
Eastern Europe &	Month 1	15	19.7	61	80.3	76
	Month 3	15	22.7	51	77.3	66
Middle East	Month 6	19	30.6	43	69.4	62
	Month 1	42	33.3	84	66.7	126
Latin America	Month 3	69	57.0	52	43.0	121
America	Month 6	65	58.0	47	42.0	112
Asia Pacific	Month 1	109	84.5	20	15.5	129
	Month 3	112	88.9	14	11.1	126
	Month 6	120	97.6	3	2.4	123

After 6 months transport status test is still not available for **2.4%** of the patients in Asia Pacific, **42%** in Western Europe and Latin America and **69%** in Eastern Europe!

Changes in PD modality during the study - by region

Biocompatible solution at baseline by region

Biocompatible solution during the study

Polyglucose use at baseline - Reason

Polyglucose baseline **157** patients 12 patients get **only Polyglucose**

Standard care 3
Achieve efficient dialysis 1
Is better overnight exchange 1
No necessary more than 1 exchange / day 1
Dialysis dose 1

Changes in use of polyglucose and hypertonic solution – by region

FO at Baseline	N	Mean	STD	Min	Median	Max
	1054	1.9	2.3	-3.3	1.5	17.7

Time dependent group allocation

FO at baseline		N	Mean	STD	Median
	CAPD	814	1.9	2.3	1.6
	APD	240	1.7	2.5	1.2

IPOD-PD study = Evolution de l'hydratation selon la biocompatibilité des solutions

Time dependent group allocation

FO at baseline		N	Mean	STD	Median
	Bio solution	767	1.8	2.2	1.5
	No bio solution	287	2.1	2.6	1.7

IPOD-PD study = Hydratation selon le type de dialysat au Glucose

Course of fluid overload by hypertonic agent

Time dependent group allocation

FO at baseline		N	Mean	STD	Median
	Hypertonic	327	2.3	2.7	1.8
	No hypertonic	715	1.7	2.1	1.3

IPOD-PD study = Hydratation selon la prescription de dialysat au polyglucose

Course of fluid overload by polyglucose use

Time dependent group allocation

FO at baseline		N	Mean	STD	Median
	Polyglucose	158	1.9	1.8	1.7
	No polyglucose	896	1.9	2.4	1.4

Course of relative FO by mild/ not mild treatment

Time dependent group allocation

mild: only biocompatible, isotonic (glucose \leq 1.5) fluids used, no polyglucose not mild: all other prescriptions

IPOD-PD study = Evolution de l'hydratation selon le Sexe

IPOD-PD study = Evolution de l'hydratation selon le statut diabetique

IPOD-PD study = Evolution de la l'OH selon "l'hydratation" initiale

IPOD-PD study = Evolution de l'hydratation selon la PA

IPOD-PD study = Evolution de l'hydratation selon le transport péritonéal

Residual renal function

Course of GFR(A), 24h urine output (B) and UF (C) – by region

Final model

factor	category	reference	Subdistri- bution HR	Lower 95% Wald CL	Upper 95% Wald CL	Pr > ChiSq
	Asia Pacific/ Korea (AP)	Wastern Furence	0.40	0.20	0.82	0.013
region	Eastern Europe & Middle East (EE & ME)	Western Europe	0.81	0.38	1.70	0.57
	Latin America (LA)	(WE)	0.78	0.43	1.41	0.40
Overally advanta di ati as O	overhydrated at m0; not overhydrated at m6	not overhydrated	1.85	1.12	3.06	0.016
Overhydrated at m0 and m6	not overhydrated at m0; overhydrated at m6	at both time	2.13	1.13	3.99	0.019
	overhydrated at both time points	points	3.17	1.93	5.22	<.0001
changes in hypertonic agent at m0 & m6 hypertonic agent start hypertonic agent between m0 and m6 hypertonic agent stop hypertonic agent	hypertonic agent at m0 & m6	no usage of	1.03	0.66	1.61	0.91
	start hypertonic agent	hypertonic agent	1.33	0.82	2.16	0.25
	stop hypertonic agent	at m0 & m6	0.74	0.25	2.23	0.59
polyglucose between start polyglu	polyglucose at m0 & m6	No usage of	1.11	0.62	1.97	0.73
	start polyglucose	polyglucose at	1.10	0.59	2.03	0.77
	stop polyglucose	m0 & m6	1.05	0.23	4.74	0.95
diabetes	yes	no	0.87	0.59	1.30	0.54
gender	male	female	0.97	0.66	1.42	0.86
age		per 10 years increase	1.19	1.04	1.36	0.01

- ➤ Effect of overhydrated: for all groups with at least 1 time point overhydrated HR>1
 - → In average technique failures occur faster for patients who are overhydrated (at 1 or both time points) than for patients who are not overhydrated.
 - → Patients with both time points overhydrated have the highest HR, followed by patients who are not overhydrated at m0, but overhydrated at m6
- \triangleright Effect of region: HR of Asia Pacific <1 \rightarrow in average technique failure occurs slower in AP than in WE
- \triangleright Effect of age: HR > 1 \rightarrow The older the patient the faster technique failures occur in average
- > No effect of hypertonic agent, polyglucose, diabetes and gender could be found

Conclusions

- Fluid overload is frequent in incident PD patients
- Improvement in fluid overload during the first year treatment
- Fluid overload is associated with technique failure
- Use of hypertonic bags is not associated with better fluid status
- Use of icodextrin is not associated with better fluid status
- Suggestion that fluid balance is of importance in the prognostic of PD patients