

Home Hemodialysis: What is New?

Tom Cornelis MD, nephrologist 2nd Self-Care Dialysis Symposium Brussels, May 23 2014

Maastricht UMC+

🗞 Maastricht University

Clinical benefits of intensive home HD

	Nocturnal HD	Short Daily HD	
Blood pressure	+++ (PVR reduction)	++ (ECV reduction)	
LV hypertrophy	+++ (afterload reduction)	++ (preload reduction)	
LV systolic function	+++	?	
Arterial compliance	+++	?	
Sleep apnoea	+++	?	
Autonomic nervous system	++	?	
Phosphate	+++	f(dialysis duration)	
Anemia	++	+	
Malnutrition	++	++	
Inflammation	++ (CRP, IL-6)	+ (CRP)	
Cognition	+	?	
Fertility	++	?	
QoL	++	++	

Benefits of intensive home HD

Modality	Phosphate control	Volume control	CKD stage
Conventional HD(F) (3x4h/week)		-	5
CAPD/APD			5
Short daily H (6x2-3h/week)			4-5
Nocturnal HD (3x8h/week)			4
Frequent Nocturnal HD (6x6-8h/week)		CO R	3
Kidney transplantatio	No.		3

• Literature Update:

- survival
- cardiovascular protection
- > pregnancy and sex hormones
- residual kidney function
- vascular access and adverse events
- ➤ particularities
- Role for incremental home HD?

• Literature Update:

> SURVIVAL

- cardiovascular protection
- pregnancy and sex hormones
- residual kidney function
- vascular access and adverse events
- ➤ particularities
- Role for incremental home HD?

Survival Benefits vs Conventional HD

Study	Countries, duration	Intensive HHD	In-center CHD	Relative mortality HHD
<i>Johansen</i> et al (KI 2009)	USA, 3 years	94 pts home NHD (5.7 days/week)	940 pts USRDS	HR 0.36 ; P<0.001
Johansen et al (KI 2009)	USA, 3 years	43 pts SDHD (5.4 days/week)	430 pts USRDS	HR 0.64; P=NS
<i>Marshall</i> et al (AJKD 2011)	Australia and New-Zealand, 72052 patient- years	865 pts frequent or extended HHD	21184 pts	HR 0.53 ; P<0.05
<i>Lockridge - Kjellstrand</i> (Hemodial Int 2011)	USA, 287 patient- years	87 pts home NHD (mean 40±6 h/week)	87121 incident pts USRDS	SMR 0.53 ; P=0.005 (ITT)
<i>Nesrallah</i> et al (JASN 2012)	France, USA, Canada, 3008 patient-years	338 pts intensive HHD (4.8x7.4 h/week)	1388 pts DOPPS	HR 0.55 ; P=0.01 (ITT)
<i>Weinhandl</i> et al (JASN 2012)	USA, mean 1.8 years	1873 pts daily HHD (5-6 sessions/week)	9365 pts USRDS	HR 0.87 ; P<0.01 (ITT)

- Literature Update:
- survival

> CARDIOVASCULAR PROTECTION

- pregnancy and sex hormones
- residual kidney function
- vascular access and adverse events
- ➤ particularities
- Role for incremental home HD?

Protection against Myocardial Stunning

Protection against Myocardial Stunning

Intensive HD Reduces LVH

Author	Effect (95% CI)	N
Frequent HD Buoncristiani (1996) Fagugli (1998) Traeger (1998) Pinciaroli (1999) Fagugli (2001) Galland (2001) Traeger (2001) Chan (2002) Chan* (2002) Reynolds (2004) Traeger (2004) Ayus (2005) Okada (2005) Fagugli (2006) He (2006) Weinreich (2007) Chertow (2010) Rocco (2011) Subtotal (I ² = 86%, p < 0.001)	-68.4 (-84.1, -52.7) -35.4 (-54.5, -16.4) -32.0 (-77.6, 13.6) -60.6 (-87.4, -33.8) -28.6 (-62.6, 5.4) -59.0 (-98.0, -20.0) -32.0 (-66.7, 2.7) -37.0 (-77.1, 3.1) -33.0 (-48.2, -17.8) -11.5 (-60.4, 37.4) -38.0 (-65.0, -11.0) -46.0 (-57.5, -34.5) 1.3 (-36.0, 38.6) -54.5 (-85.1, -23.9) -29.5 (-37.0, -22.0) -33.3 (-76.2, 9.6) -7.1 (-16.7, 2.5) -8.9 (-14.2, -3.6) -4.6 (-13.2, 4.0) -31.8 (-41.8, -21.8)	34 23 4 12 10 15 6 28 10 17 26 6 12 16 6 26 10 37
Extended HD McGregor (2001) Fagugli* (2006) Weinreich* (2006) Ok (2011) Subtotal (l ² = 67%, p = 0.029) Overall (l ² = 84%, p < 0.001)	0 (-41.2, 41.2) -55.0 (-76.0, -34.0) -23.8 (-51.8, 4.2) -24.0 (-32.2, -15.8) -29.0 (-47.8, -10.2) -31.2 (-39.8, -22.5)	9 12 11 91
-100 -75 -5	0 -25 0 25 50 Change in LVMI (g/m ²)	

Myocardial Mechanics after Conversion to NHD

Cardiomyocyte gene signature after conversion to NHD

Acute Hemodynamic Effects in Extended Dialysis

Parameter	4hHD	4hHDF	8hHD	8hHDF
Peripheral SBP (mmHg)	-21.7	-23.3	-6.7*	-0.5*†
Peripheral DBP (mmHg)	-5.0	-11.5	-1.1†	-1.2†
Central SBP (mmHg)	-19.2	-24.2	-7.1	-3.8
Central DBP (mmHg)	-5.0	-12.1*	-2.6	+3.5†
CO (L/min)	-1.4	-1.6	-0.4†	-0.5†
RBV (%)	-8.1	-9.1	-4.4†	-3.3*†
ET rate (W)	-13.3	-16.2	-14.2	-14.5

Maastricht UMC+

*P<0.05 vs HD4; † P<0.05 vs HDF4

- Literature Update:
- survival
- cardiovascular protection

> PREGNANCY AND SEX HORMONES

- residual kidney function
- vascular access and adverse events
- ➤ particularities
- Role for incremental home HD?

Intensive Home HD in Pregnancy

- Uremic toxins
- Peripheral vascular resistance
- Hypervolemia
- Blood pressure
- Endothelial dysfunction

Normal placental development Reduced risk of preeclampsia Prevention of polyhydramnios Better fetomaternal outcomes

Improved Pregnancy Outcomes with Intensive Home HD

Live Birth Rates by Dialysis Intensity

Time to event analysis by dialysis intensity

Intensive home HD should be considered as a viable and feasible option for dialysis patients of childbearing age who want to become pregnant or who are pregnant

(0 - 20)

(21 - 36)

(37 - 56)

Hours of Hemodialysis

Sex Hormones and Intensive Home HD

CHD→ NHD

CHD→ NHD

• Literature Update:

- survival
- cardiovascular protection
- pregnancy and sex hormones

> RESIDUAL KIDNEY FUNCTION

- vascular access and adverse events
- ➤ particularities
- Role for incremental home HD

FHN: Residual Kidney Function

Nocturnal Trial

Daily Trial

FHN: Residual Kidney Function

- More intradialytic hypotension in nocturnal HD? Not excluded
- Platelet activation and increased inflammation in extended HD? Possible
- Drivers of RKF are reduced in nocturnal HD:
 - Blood pressure
 - Extracellular volume
 - Osmotic load

 \rightarrow no clear-cut relationships were found

• Literature Update:

- survival
- cardiovascular protection
- > pregnancy and sex hormones
- residual kidney function

> VASCULAR ACCESS AND ADVERSE EVENTS

- ➤ particularities
- Role for incremental home HD

Frequent Hemodialysis and Vascular Access

- In-depth review
- MEDLINE search for all trials looking at vascular access outcomes in frequent HD
- Nineteen studies included (1998-2012): 3 RCT, 11 prospective cohort, 5 retrospective cohort
- Vascular access events: admissions, dysfunction, infection, permanent access failure
- Statistics: log-linear mixed effects models with study specific random effects

Vascular Access in High Dose HD?

1 2 3 4 5 Ratio

0

Adverse events in home HD

- 2 Canadian home HD centers, 500 patient-years
- 1 death and 6 potentially fatal adverse events

= 0.06 events/1000 dialysis treatments

• 5/7 events human errors with lapses in protocol adherence

Case No	Human Error(s) or Machine/ Disposable Defects	Immediate Cause of Adverse Event	Details
1	Human error	Blood loss	Ignored machine alarms; improper threading of connections; placement of wetness detectors in incorrect position
2	Human error	Air embolism	Neglected to clamp CVC
3	Possible human error, possible disposable defect	Blood loss	Possible failed integrity of cap; possibly did not correctly thread connections
4	Possible human error, possible disposable defect	Blood loss	Improper placement of clamp; failed integrity of cap
5	Human error	Blood loss	Improper machine setup; neglected to use wetness detectors
6	Human error	Blood loss	Improper threading of connections; placement of wetness detector in incorrect position
7	Human error	Blood loss	Did not follow machine setup protocol specific to local home HD program

Adverse events in home HD

- 2 Canadian home HD centers, 500 patient-years
- 1 death and 6 potentially fatal adverse events

= 0.06 events/1000 dialysis treatments

• 5/7 events human errors with lapses in protocol adherence

• Literature Update:

- survival
- cardiovascular protection
- > pregnancy and sex hormones
- residual kidney function
- vascular access and adverse events

> PARTICULARITIES

• Role for incremental home HD

Solar-assisted Home Hemodialysis

-Power bills for dialysis-related usage=0 -Also for home patients: zero power bill; cost 3400 AUD

Maastricht UMC+ Courtesy of John Agar, Geelong Hospital, Australia

Solar-assisted Hemodialysis

Van in design phase in South Australia

Intensive HD in Primary Hyperoxaluria

Home Hemodialysis in the Elderly

- 6 centres, 79 patients \geq 65 years at start
- cumulative time at risk 188 years; median follow-up time 2.0 (1.0-3.6) years
- 17 (22%) deaths: CV events (8), co-morbidities (4), withdrawal (2)
- 20 (26%) technique failures: co-morbidities (10), partner-related (6)
- 19 (24%) kidney transplantations

Home Hemodialysis in the Elderly

Primary Outcome: death or technique failure

Secondary Outcome: technique failure

Home HD is Feasible in the Elderly;

QoL? Survival? Hospitalization? Cost?...

- Literature Update:
- survival
- cardiovascular protection
- > pregnancy and sex hormones
- residual kidney function
- vascular access and adverse events
- ➤ particularities

• Role for incremental home HD

Role for INCREMENTAL Home HD?

- Definition: increase dialysis dose according to RKF together with clinical and subclinal parameters e.g. 3x4h→3.5x4h→4x4h→3.5x8h→6x8h/week
- Rationale: more rapid loss of RKF, attention and global cognition, and increased vascular access complications with frequent HD?
- Tools to monitor subclinical parameters:

e.g. bio-impedance, physical activity measurement, polysomnography, FGF23, oxidative stress, inflammation, AGE's, MRI, PET...

• Requires further studies and validation

Conclusions

- Home HD is an excellent option for our ESRD patients
- Potential adverse events should not be ignored and require attention and further study
- We live in an era of EBM...but RCT's are extremely difficult to perform
- So should we not rely on the ample beneficial effects of (intensive) home HD in observational studies as well as on the day-to-day clinical experience with these patients?
- The role of incremental home HD needs investigation

Thank you! Questions?

