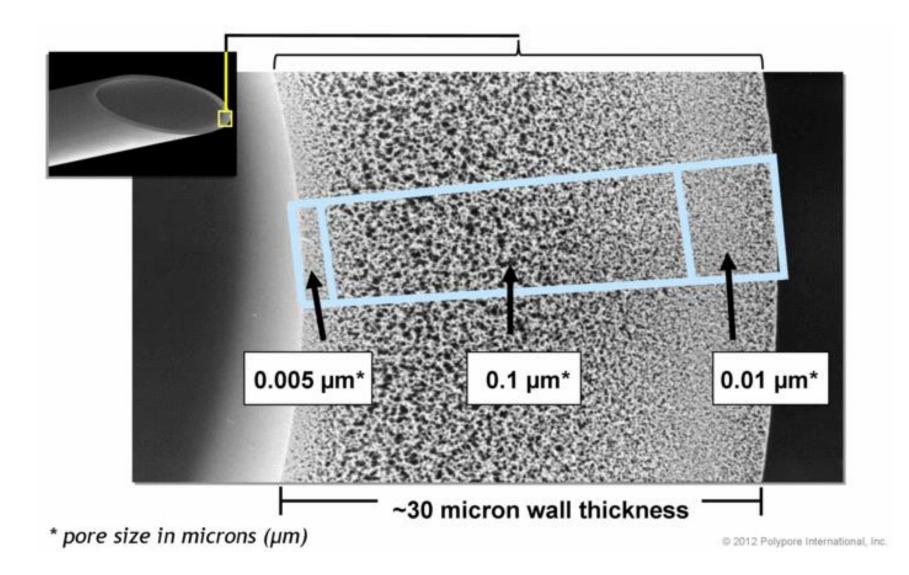

How to evaluate the peritoneal membrane?

3rd self-care dialysis symposium 12th & 13th May 2016



How to evaluate a hemodialyzer?

We How to evaluate a hemodialyzer?

Iself-care dialysis symposium

How to evaluate a hemodialyzer?

self-care dialysis

DEFINITIONS OF FLUX, PERMEABILITY, AND EFFICIENCY

Flux

Measure of ultrafiltration capacity

Low and high flux are based on the ultrafiltration coefficient (K_{uf})

Low flux: K_{uf} <10 mL/h/mm Hg

High flux: K_{uf} >20 mL/h/mm Hg

Permeability

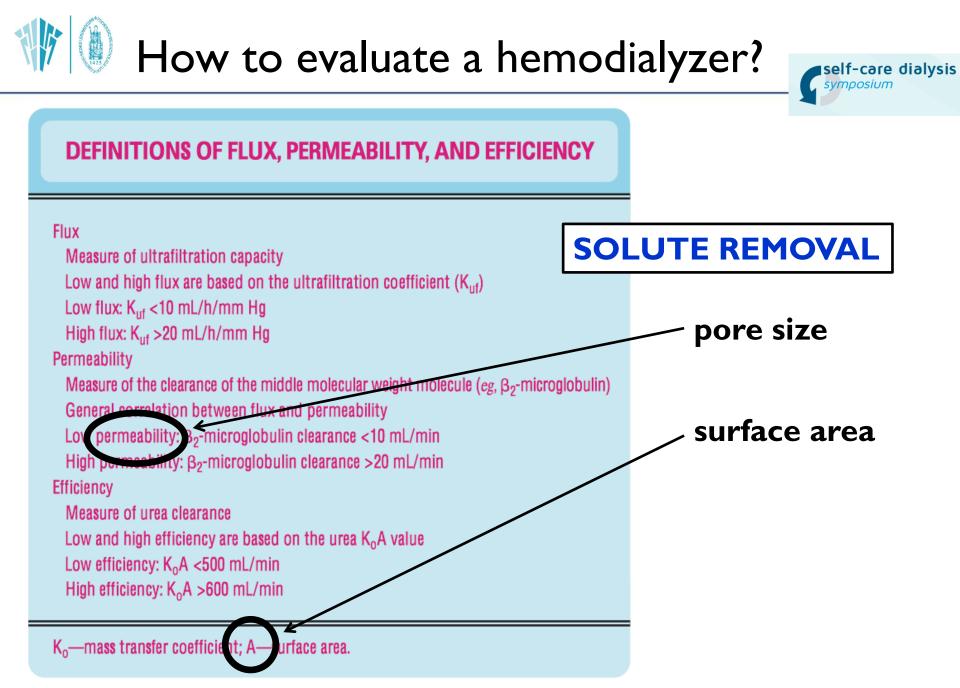
Measure of the clearance of the middle molecular weight molecule (eg, B2-microglobulin)

General correlation between flux and permeability

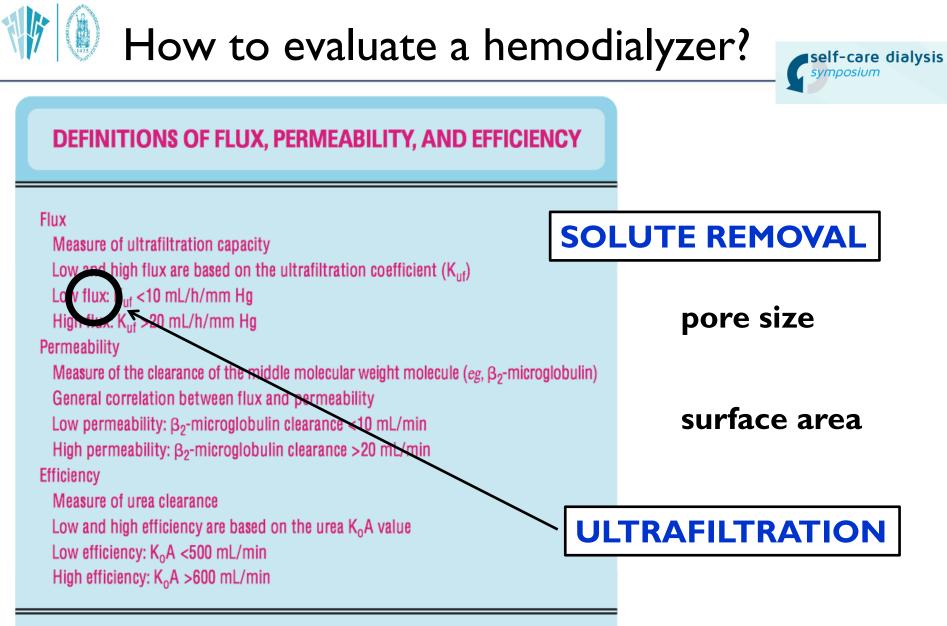
Low permeability: β_2 -microglobulin clearance <10 mL/min

High permeability: β_2 -microglobulin clearance >20 mL/min

Efficiency


Measure of urea clearance

Low and high efficiency are based on the urea KoA value


Low efficiency: K_oA <500 mL/min

High efficiency: K_oA >600 mL/min

Ko-mass transfer coefficient; A-surface area.

From: Robert W. Schrier's Atlas of Diseases of the Kidney

K_o—mass transfer coefficient; A—surface area.

Hemodialyzer vs. peritoneum?

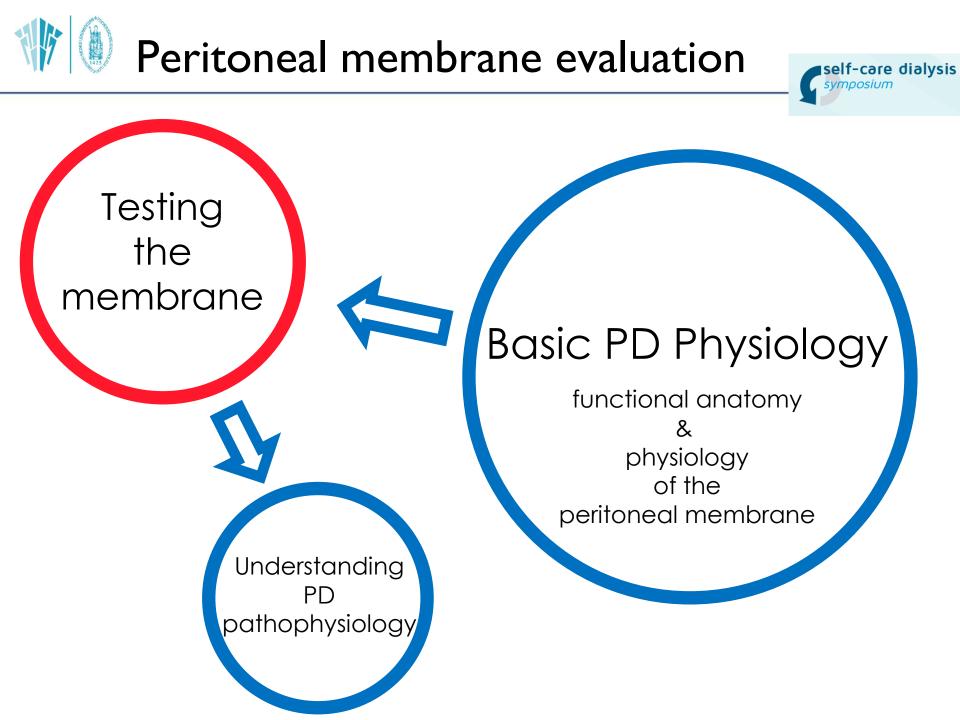
globin nitroglobulin n nitroglobulin hrbrane material lisaton material	RE							in)	4									
brane material isation method ing material	RE			imin igʻobin hicroglobulin				66,500 17,053 11,731			< 0.001 0.5 0.9							
	BE	-	ation method				5,200 1 Helicane*pi INU.NE stear Polysropyler					e® <i>plus</i> steam	eam					
		REVACLEAR RE				EVACLEAR 300				REVACLEAR MAX					REVA	CLEAR	R 400	
Product Code:		11063	33	_	_	114	1745			1	110634				1	114746		
Hemodialysis 0 ₀ =500 mL/min, UF=0 mL/min																		
8		300	400	500	200	300	400		200	300	400	500	600	200	300	400	500	60
		271	321	353	196	272	323	356	198	282	339	376	400	198	281	338	375	40
		250 239	289 274	316 298	191 185	256 242	298 278	326 303	195 191	265 256	311 297	341 324	362 343	195 191	267 255	315 297	348 326	37
		239 170	274 186	298 197	185	242	278	204	191	256 191	297	324 225	343 235	191	255	297	326 228	34 24
Hemodialysis											Ż							
Q ₂ =800 mL/min_VF=0 mL/min Q ₂ (mL/min)	200	300	400	500	200	300	400	500	200	300	400	500	600	200	300	400	500	60
0.0		286	355	408	199	286	355	408	200	293	371	432	479	199	292	369	430	47
		269	324	364	195	273	330	373	197	281	345	393	430	198	283	348	398	47
		259	307	343	191	260	309	345	196	273	330	373	406	195	272	330	373	40
		187	208	223	155	189	212		169	211	240	260	276	167	208	236	256	27
Specifications																		
Blood flow rate (mL/min)		200-	-500			200	0-500			200-600					200-600			
Dialysate flow (mL/min)		80	00			300	0-800				800				5	300-80	ð	
Membrane																		
Material	1	PAES				PAES/PVP				PAES/PVP				PAES/PVP				
Surface area (m²) UF Coefficient in		1.		_		1.4			-	1.8				1.8				
UF Coefficient in vitro (mL/h.mHg) (Bovine blood, hematocrit=32%, protein=60 g/l, 37°C)	50			40														
Priming volume (mL)		8	4			74				100						93		
Residual blood volume (mL)	<1				<1					<1					<1			
Fiber Dimensions																		
Wall Thickness Membrane (µm) Inner Diameter										35								
Hollow Fiber (µm)										190								
Maximum TMP (mmHg)										600								
Sterilization agent									S	Steam								
Sieving Coefficient in v	vitro. T	Туріс	al va	lues r	measi	ured v	with R	EVAC	LEAR	Dialy:	zer ac	cordir	ng to I	EN128	3			
Vitamin B ₁₂						1.0												
Inulin						1.0												
B2-microglobulin						0.7												

self-care dialysis

+ the effects of intercurrent disease time glucose exposure

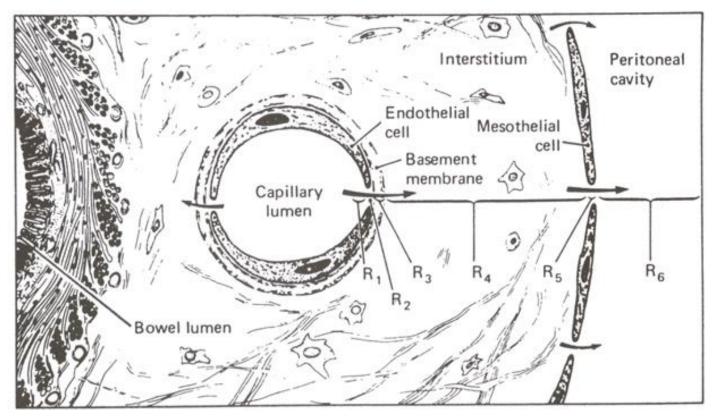
symposium

Testing the membrane


Peritoneal membrane evaluation

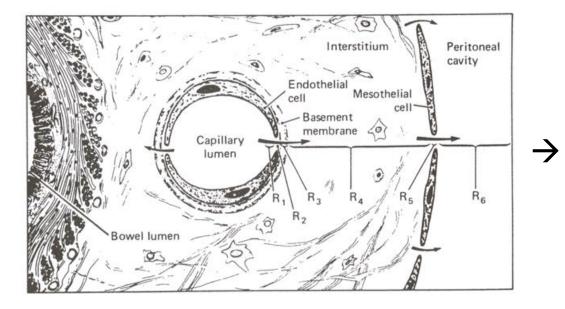
self-care dialysis

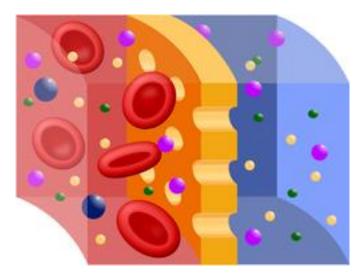
Testing the membrane


Test	Application/advantages	Limitations
Original PET (2.27%) [12,13,38-40]	Small-solute transport, expressed as D/P value Categories fast/average/slow should guide prescription	Limited information
	management (see Table 1) Widely used	No information on sodium sieving
	Definition of UF failure	FWT or OC
Modified PET (3.86% glucose) [41]	Small-solute transport, expressed as D/P value	No quantitative information on
	Categories fast/average/slow should guide prescription management (see Table 2)	FWT or OC
	Information on sodium sieving	
	Recommended for definition of UF failure	
APEX (accelerated peritoneal	Apex time, being the moment when the curves of D/D_0	No information on sodium sieving
examination test) [42]	glucose and D/Pcrat cross	FWT or OC
	Very suitable to define 'optimal dwell time' for individual patients	
PDC® (Peritoneal Dialysis Capacity)	More reliable data because more measuring points	Multiple laboratory test needed
test [34,35,43-45]	Small-solute transport, expressed as area over diffusion distance (A_q/dX) . Easily convertible to D/P values	
	Large pore flow	Computer support for calculations
	Estimate of net peritoneal fluid loss (peritoneal reabsorption)	needed
	Computer-aided prescription management	
Mini PET [15,21]	FWT It lasts only 1 h	Small-solute transport difficult to interpret
		No information on peritoneal reabsorption or OC
Double mini PET[23]	FWT	Small-solute transport difficult
	OC	to interpret
	It lasts only 2 h	No information on peritoneal reabsorption
Modified PET with temporary	Small-solute transport, expressed as D/P value	No information on OC
drainage	Categories fast/average/slow should guide prescription management (see Table 1)	No information on peritoneal reabsorption rate
	Information on sodium sieving, FWT	

van Biesen et al. Nephrol Dial Transplant 25: 2052-2062, 2010

Stagnant layers at mesothelial and capillary side: not relevant Mesothelial cell layer: not relevant Interstitial tissue: (minor) diffusive resistance Capillary wall: most important restriction barrier

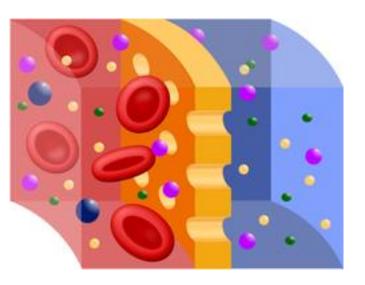

Nolph et al. Kidney Int 18 (Suppl 20): S111-S116, 1980 Flessner et al. J Am Soc Nephrol 2: 122-135, 1991


self-care dialysis

Capillary wall is the most important restriction barrier and determines the peritoneal membrane's size-selectivity through a system of pores

→ the "PORE THEORIES"

self-care dialysis


ULTRAFILTRATION

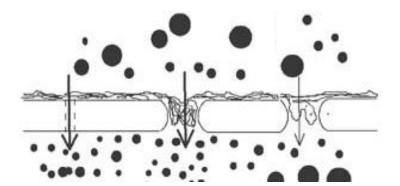
self-care dialysis

symposium

pore size surface area

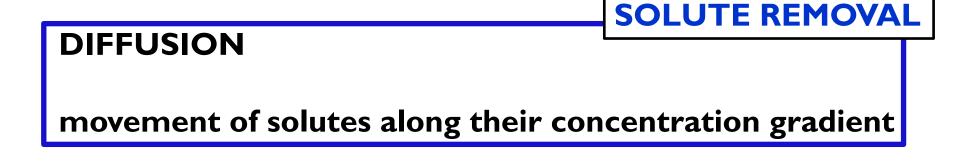
DEFINITIONS OF FLUX, PERMEABILITY, AND EFFICIEN	ICY		
Flux Measure of ultrafiltration capacity Low and high flux are based on the ultrafiltration coefficient (K_{id})	SOL	UTE REMOVAL	'
Low flux: K _{uf} <10 mL/h/mm Hg High flux: K _{uf} >20 mL/h/mm Hg		pore size	
Permeability Measure of the clearance of the middle molecular weight molecule (eg, β_2 -microg General correlation between flux and permeability Low permeability: β_2 -microglobulin clearance <10 mL/min High permeability: β_2 -microglobulin clearance >20 mL/min	lobulin)	surface area	
Efficiency Measure of urea clearance			
Low and high efficiency are based on the urea K _o A value Low efficiency: K _o A <500 mL/min High efficiency: K _o A >600 mL/min		RAFILTRATIO	N

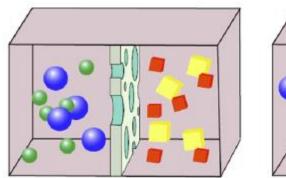
From: Robert W. Schrier's Atlas of Diseases of the Kidney

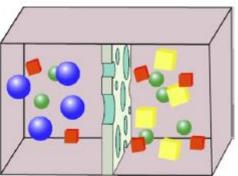


Small pores with constant radius 40-50Å majority for transport of low molecular weight solutes

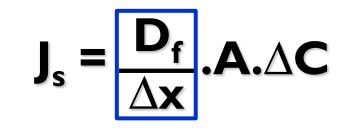
Large pores with various radii, average > 150Å minority (less than 0.1% of total pore count) for transport of macromolecules f-care dialysis


svmposium


Ultra-small pores with radius 3-5Å for transport of water only accounts for 1/2 of transcapillary water transport



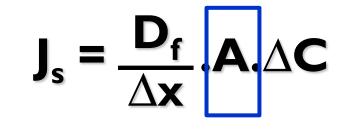
The pore theory explains the "classical" mechanisms of transmembrane transport of molecules.



Bammens Semin Nephrol 31: 127-137, 2011

self-care dialysis

svmoosium



self-care dialysis

symposium

diffusive permeability (membrane- and solute-specific)

self-care dialysis

symposium

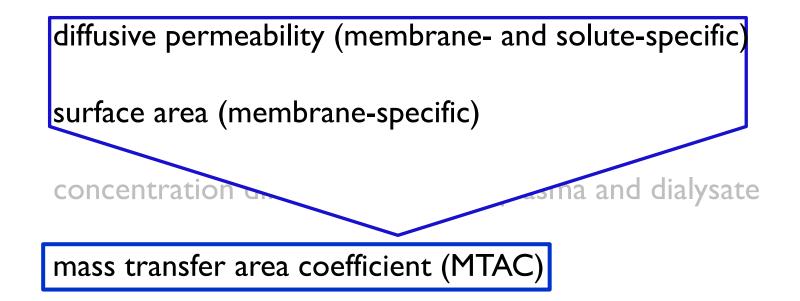
diffusive permeability (membrane- and solute-specific)

surface area (membrane-specific)

self-care dialysis


svmposium

diffusive permeability (membrane- and solute-specific)


surface area (membrane-specific)

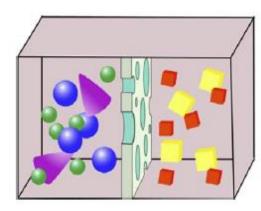
concentration difference between plasma and dialysate

self-care dialysis

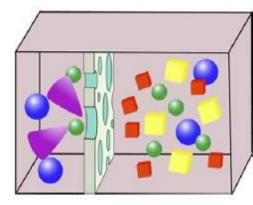
self-care dialysis

svmposium

$J_s = MTAC.\Delta C$


Transport of small molecules up to MW of $\beta_2 M$ (11,8 kDa) NOT limited by size of the pores

MTAC for a given solute ONLY determined by <u>effective vascular peritoneal surface area (number of pores)</u>



The pore theory explains the "classical" mechanisms of transmembrane transport of molecules.

movement of solutes along with fluid as it moves across the membrane (solvent drag)

CONVECTION

SOLUTE REMOVAL

self-care dialysis

svmoosium

Bammens Semin Nephrol 31: 127-137, 2011

 $J_{s} = J_{v}.\bar{C}.(1-\sigma)$

self-care dialysis

 $\mathbf{J}_{s} = \mathbf{J}_{v} \cdot \mathbf{\bar{C}} \cdot (\mathbf{I} - \mathbf{\sigma})$

water flux (membrane-specific)

 $\mathbf{J}_{s} = \mathbf{J}_{v} \cdot \mathbf{\bar{C}} \cdot (\mathbf{I} - \mathbf{\sigma})$

water flux (membrane-specific)

mean solute concentration in the membrane (P+D)/2

self-care dialysis

 $J_s = J_v \cdot \overline{C} \cdot (I - \sigma)$

water flux (membrane-specific)

mean solute concentration in the membrane (P+D)/2

self-care dialysis

symposium

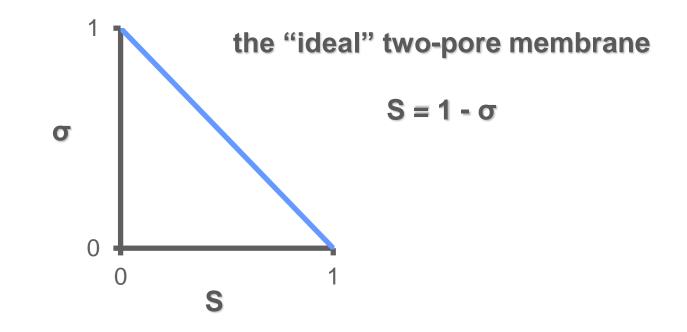
Staverman's reflection coefficient = how difficult it is for a solute to be transported by solvent drag across a semi-permeable membrane (membrane- and solute-specific)

σ Staverman's reflection coefficient

= how difficult it is for a solute to be transported by solvent drag across a semi-permeable membrane

f-care dialysis

symoosium



S sieving coefficient

= how easy it is for a solute to be transported by solvent drag across a semi-permeable membrane

For a semi-permeable membrane, S and σ are expected to be perfectly interchangeable concepts!

self-care dialysis

σ

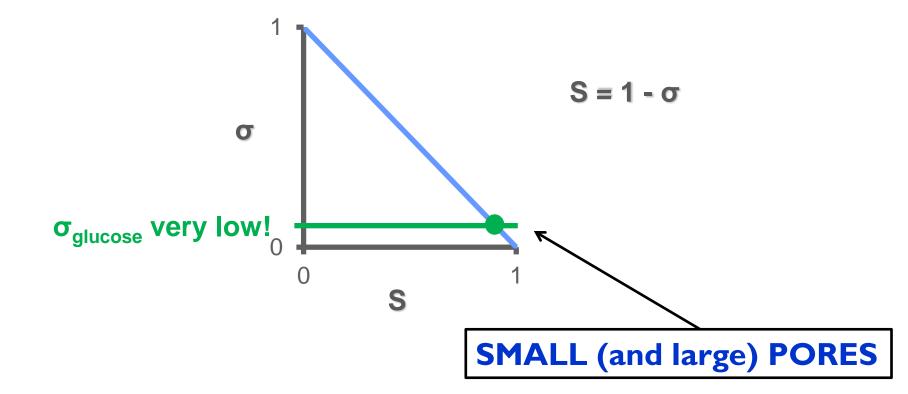
Staverman's reflection coefficient

care dialysis

= how difficult it is for a solute to be transported by solvent drag across a semi-permeable membrane

= fraction of maximal osmotic pressure a solute can exert across a semi-permeable membrane

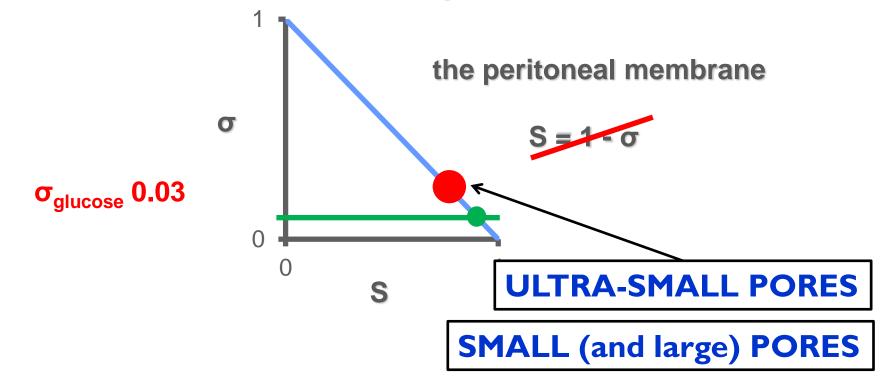
S sieving coefficient


= how easy it is for a solute to be transported by solvent drag across a semi-permeable membrane

= fraction of maximal solute transport by solvent drag across a semi-permeable membrane

For a semi-permeable membrane, S and σ are expected to be perfectly interchangeable concepts!

self-care dialysis



For a semi-permeable membrane, S and σ are expected to be perfectly interchangeable concepts!

care dialysis

svmoosium

However, the water-only channels make the peritoneal membrane "more than a semi-permeable membrane"!

Ultra-small pores with radius 3-5Å

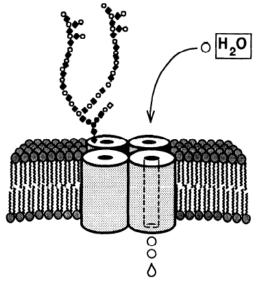
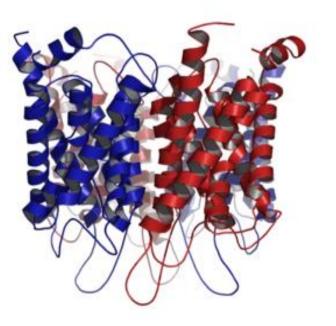
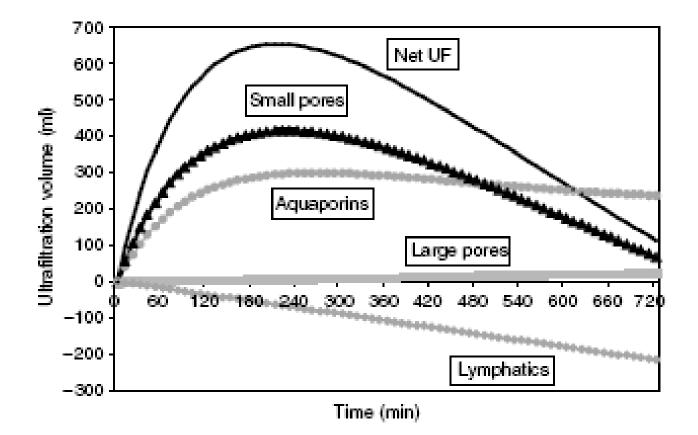



Fig. 1. Schematic model representing CHIP integral membrane protein within the membrane lipid bilayer. Notable features include 1) homotetrameric complex with 1 subunit bearing a polylactosaminoglycan, 2) minimal polypeptide mass extending above or below the lipid bilayer, and 3) possible individual water pore within each subunit.

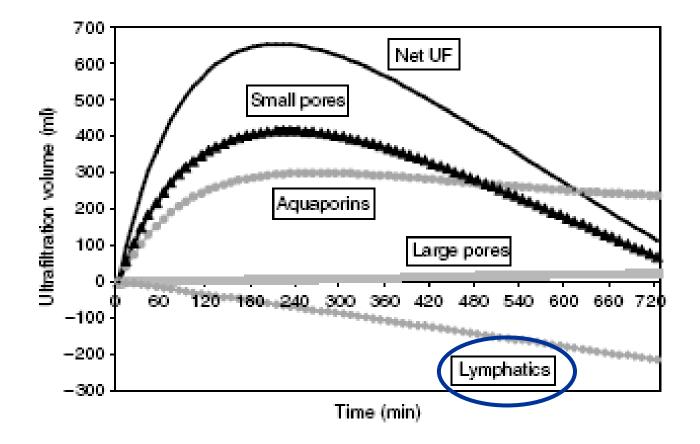
AQUAPORIN-1


self-care dialysis

symposium

Agre et al. Am J Physiol 265: F463-F476, 1993

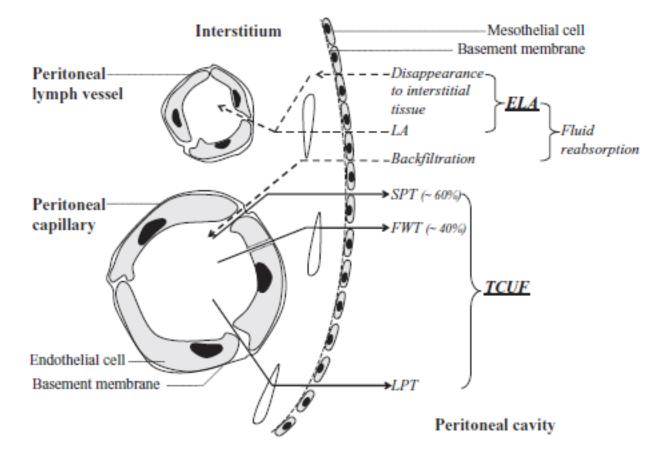
ULTRAFILTRATION



Davies Kidney Int 70 (Suppl 103): 76-83, 2006

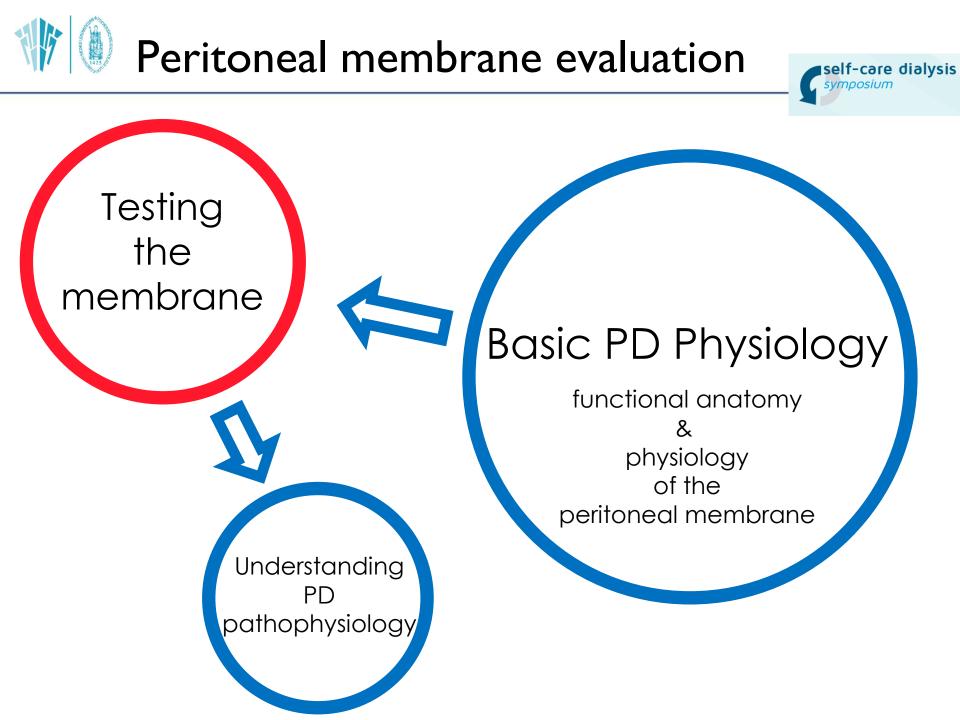
self-care dialysis

ULTRAFILTRATION



Davies Kidney Int 70 (Suppl 103): 76-83, 2006

self-care dialysis



self-care dialysis

 $NUF = \Delta IPV = TCUF - ELA$

Coester et al. NDT Plus 2: 104-110, 2009

Peritoneal membrane evaluation

self-care dialysis

Test	Application/advantages	Limitations		
Original PET (2.27%) [12,13,38-40]	Small-solute transport, expressed as D/P value Categories fast/average/slow should guide prescription management (see Table 1)	Linited information		
	Widely used Definition of UE failure	No information on sodium sieving, FWT or OC		
Modified PET (3.86% glucose) [41]	Small-solute transport, expressed as D/P value Categories fast/average/slow should guide prescription management (see Table 2) Information on sodium sieving	No quantitative information on FWT or OC		
	Recommended for definition of UF failure			
APEX (accelerated peritoneal examination test) [42]	Apex time, being the moment when the curves of D/D ₀ glucose and D/P _{crast} cross Very suitable to define 'optimal dwell time' for individual patients	No information on sodium sieving, FWT or OC		
PDC® (Peritoneal Dialysis Capacity) test [34,35,43-45]	More reliable data because more measuring points Small-solute transport, expressed as area over diffusion distance (A_0 (dX). Easily convertible to D/P values	Multiple laboratory test needed		
	Large pore flow Estimate of net peritoneal fluid loss (peritoneal reabsorption) Computer-aided prescription management	Computer support for calculations needed		
Mini PET [15,21]	FWT It lasts only 1 h	Small-solute transport difficult to interpret		
		No information on peritoneal reabsorption or OC		
Double mini PET[23]	FWT OC	Small-solute transport difficult to interpret		
	It lasts only 2 h	No information on peritoneal reabsorption		
Modified PET with temporary	Small-solute transport, expressed as D/P value	No information on OC		
drainage	Categories fast/average/slow should guide prescription management (see Table 1) Information on sodium sieving, FWT	No information on peritoneal reabsorption rate		

FWT, free water transport; OC, osmotic conductance.

Canadian Society of Nephrology/ Société Canadienne De Néphrologie

CSN/SCN

THE RF

founded 1950

ASSO

Canadian Society of Nephrology, PDI 31:218-239, 2011

National Kidney Foundation™

NKF K/DOQI Am J Kidney Dis 48 (Suppl 1): \$138-\$142, 2006

UK Renal Association, Guidelines 2010 (review due 2013)

ISPD GUIDELINES/RECOMMENDATIONS

GUIDELINE ON TARGETS FOR SOLUTE AND FLUID REMOVAL IN ADULT PATIENTS ON CHRONIC PERITONEAL DIALYSIS

SOLUTE REMOVAL

3. For small solute removal, the total (renal + peritoneal) Kt/V urea should not be less than 1.7 at any time (*Evidence level A*). That means, in anuric patients, peritoneal Kt/V urea has to be above 1.7. In the presence of residual renal function, the contributions of renal and peritoneal clearances may be added for practical purposes, although, as mentioned previously, renal and peritoneal clearances may not be truly additive (*Opinion*). Solute removal above this level should not be equated with "adequate dialysis." Knowledge of the transport characteristics of the patient's peritoneal membrane by peritoneal equilibration test or other tests may help to optimize the prescription to meet this target.

svmposium

self-care dialysis

ISPD GUIDELINES/RECOMMENDATIONS

EVALUATION AND MANAGEMENT OF ULTRAFILTRATION PROBLEMS IN PERITONEAL DIALYSIS

symnosium

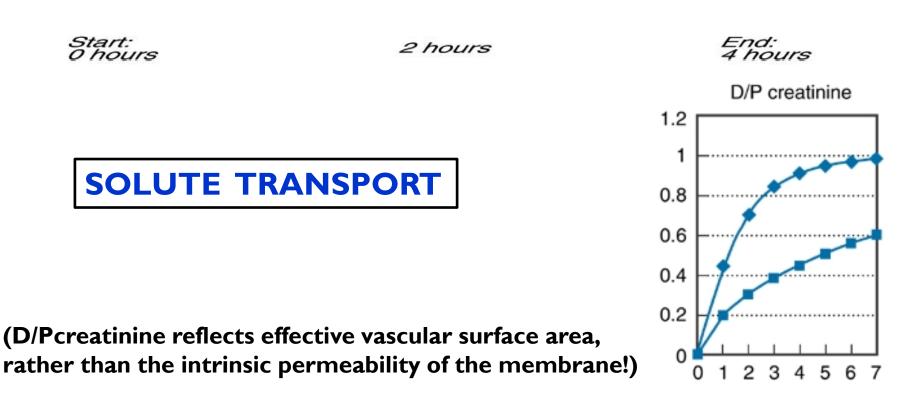
self-care dialysis

ULTRAFILTRATION

Recommendations:

• Adherence to sound physiologic principles in the design and implementation of PD prescriptions is essential to prevent the emergence of fluid overload. The most frequently ignored principles in PD that lead to UF difficulties, are the need to avoid long dwells in high transporters, and balancing glucose concentration and dwell time. Prescription setting must take these into account.

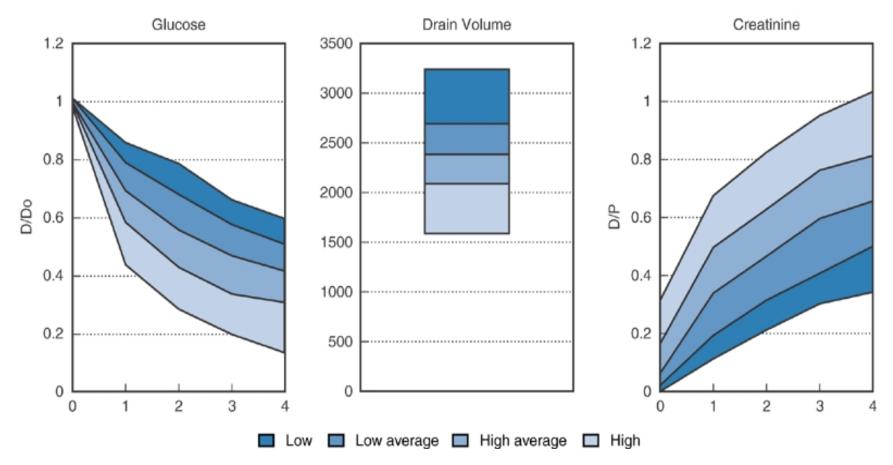
Peritoneal membrane evaluation


self-care dialysis

Test	Application/advantages	Limitations
Original PET (2.27%) [12,13,38-40]	Small-solute transport, expressed as D/P value Categories fast/average/slow should guide prescription management (see Table 1)	Limited information
	Widely used Definition of UE failure	No information on sodium sieving, FWT or OC
Modified PET (3.86% glucose) [41]	Small-solute transport, expressed as D/P value Categories fast/average/slow should guide prescription management (see Table 2) Information on sodium sieving	No quantitative information on FWT or OC
	Recommended for definition of UF failure	
APEX (accelerated peritoneal examination test) [42]	Apex time, being the moment when the curves of D/D ₀ glucose and D/P _{crast} cross Very suitable to define 'optimal dwell time' for individual patients	No information on sodium sieving, FWT or OC
PDC® (Peritoneal Dialysis Capacity) test [34,35,43-45]	More reliable data because more measuring points Small-solute transport, expressed as area over diffusion distance (A_0 (dX). Easily convertible to D/P values	Multiple laboratory test needed
	Large pore flow Estimate of net peritoneal fluid loss (peritoneal reabsorption) Computer-aided prescription management	Computer support for calculations needed
Mini PET [15,21]	FWT It lasts only 1 h	Small-solute transport difficult to interpret
		No information on peritoneal reabsorption or OC
Double mini PET[23]	FWT OC	Small-solute transport difficult to interpret
	It lasts only 2 h	No information on peritoneal reabsorption
Modified PET with temporary	Small-solute transport, expressed as D/P value	No information on OC
drainage	Categories fast/average/slow should guide prescription management (see Table 1) Information on sodium sieving, FWT	No information on peritoneal reabsorption rate

FWT, free water transport; OC, osmotic conductance.

Twardowski Blood Purif 7:95-108, 1989

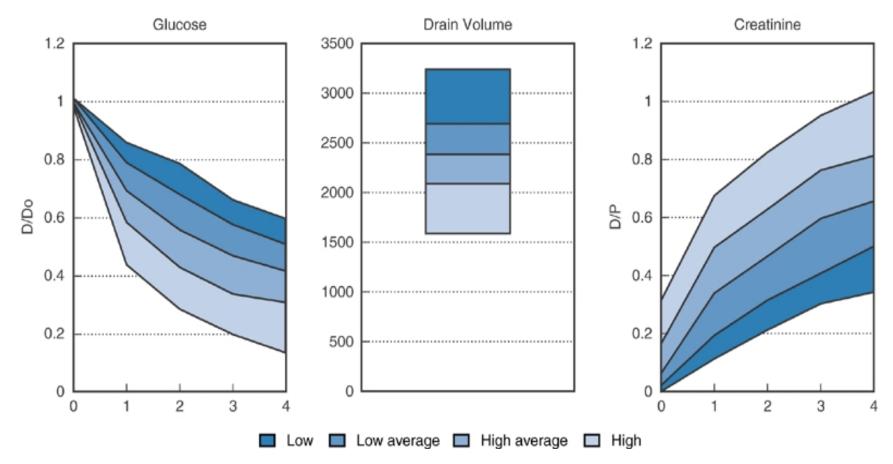

self-care dialysis

The original 2.27% PET test

SOLUTE TRANSPORT

self-care dialysis

PERITONEAL EQUILIBRATION TEST


Twardowski Blood Purif 7:95-108, 1989

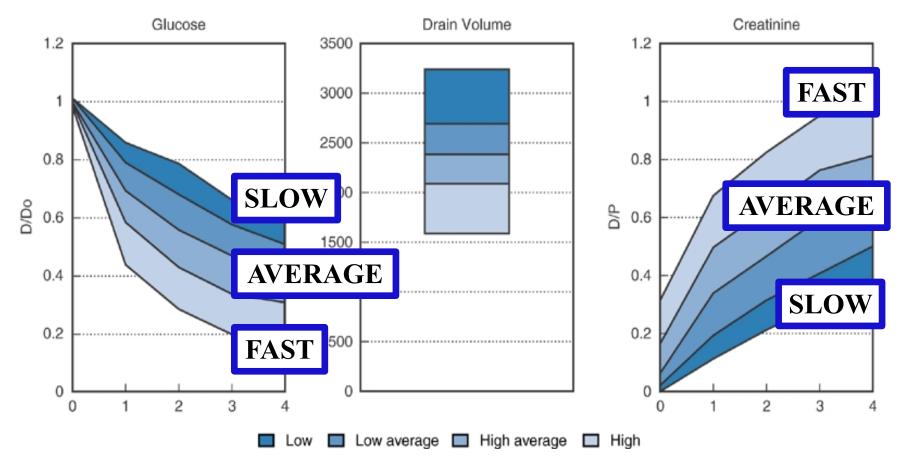
ULTRAFILTRATION

SOLUTE TRANSPORT

PERITONEAL EQUILIBRATION TEST

Twardowski Blood Purif 7:95-108, 1989

iself-care dialysis



ULTRAFILTRATION

SOLUTE TRANSPORT

self-care dialysis

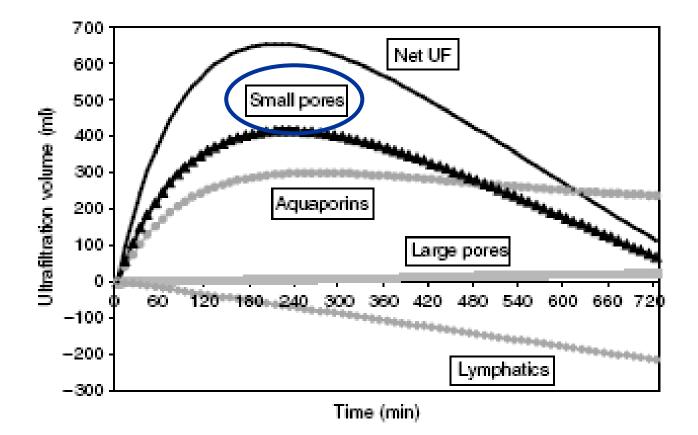
PERITONEAL EQUILIBRATION TEST

Twardowski Blood Purif 7:95-108, 1989

Fast/slow: need a test?

self-care dialysis

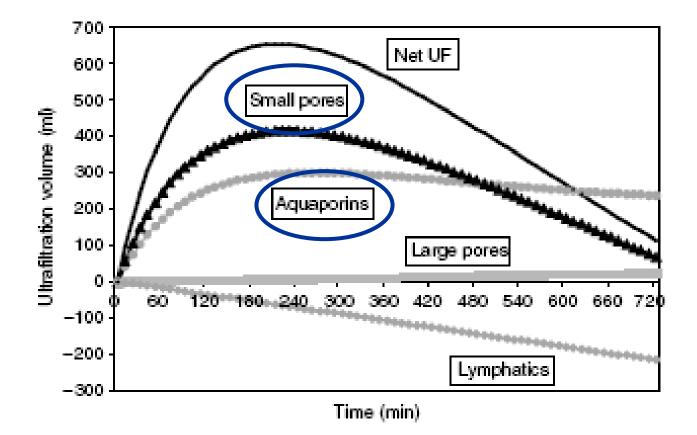
Table 1. Peritoneal membrane transport types and their consequences for clinical management


Transport type	Properties	Recommendations
Fast transporter	Fast, hyperbolic, equilibration of creatinine, typically with a $D/P_{creat} > 0.80$ after 4 h	Short dwells, preferably shorter than 180 min
FAST	Fast dissipation of glucose from the peritoneal cavity, with negative ultrafiltration in dwells with 1.36% glucose longer than 180 min	Icodextrin to be considered for longest dwell, unless sufficient residual diuresis
	Limited sodium sieving, with 3.86% PET and small (<5 mmol/l) delta D_{sodium} (difference between the D_{sodium} at start and after 1 h)	Check inflammatory status (peritoneal protein loss). When negative, check transport status using larger fill volumes
Average transporter AVERAGE	Moderately fast equilibration of creatinine, with a steeper slope in the beginning than at the end of the dwell Moderately fast disappearance of osmotic agent. Negative ultrafiltration only in too long dwells (>240 min)	Too short (<120 min) and too long dwells (>300 min) should be avoided, except for one exchange/day (the 'long dwell')
Slow transporter	Slow, semi-linear equilibration of creatinine, typically with a $D/P_{creat} < 0.55 - 0.60$ after 4 h	Long dwells, preferably longer than 240 min
SLOW	Sustained ultrafiltration even in dwells longer than 240 min Important sodium sieving, with 3.86%-PET and substantial delta D_{sodium} (>5 mmol/l) after 1 h (the peak of delta D_{sodium} could occur later in the dwell)	Use larger volumes rather than more dwells Icodextrin probably not necessary for longest dwell Be aware of sodium sieving when using dwells shorter than 180 min

Can be derived from clinical observation without need of formal testing!

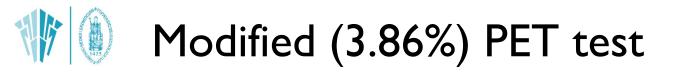
van Biesen et al. Nephrol Dial Transplant 25: 2052-2062, 2010

ULTRAFILTRATION

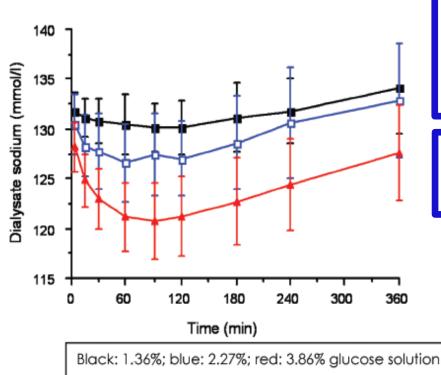


Davies Kidney Int 70 (Suppl 103): 76-83, 2006

self-care dialysis

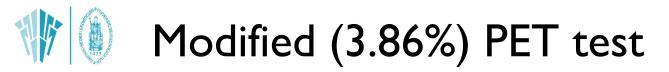


ULTRAFILTRATION


Davies Kidney Int 70 (Suppl 103): 76-83, 2006

self-care dialysis

With a hypertonic dialysate solution, dialysate Na⁺ concentration will decrease initially due to water-only transport across aquaporins.

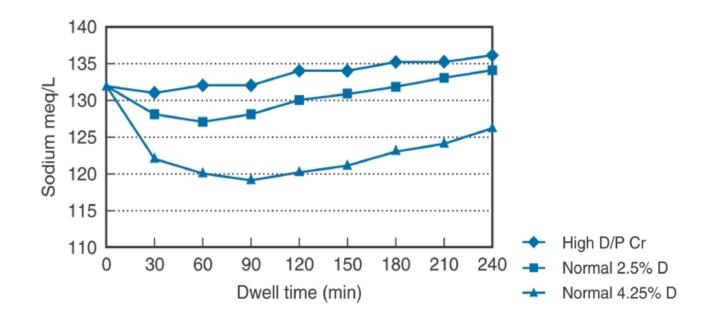

Time profile D/P_{sodium} , D_{sodium} (or D/D0 or ΔD_{sodium} at 1 hour) CAN BE USED TO ASSESS THE CONTRIBUTION OF AQUAPORIN TRANSPORT TO ULTRAFILTRATION

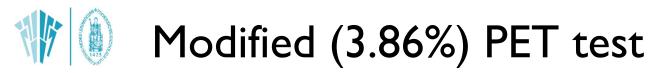
self-care dialysis

symposium

ISPD definition of UF failure =

< 400ml UF after 4 hours of 3.86% glucose




BUT: A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

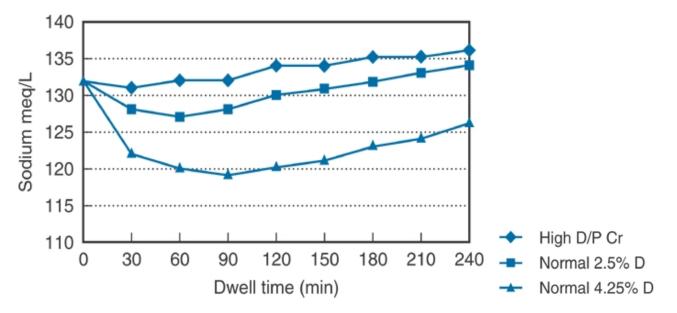
self-care dialysis

svmoosium

aquaporin deficiency "very very fast" small solute transport (small pores)

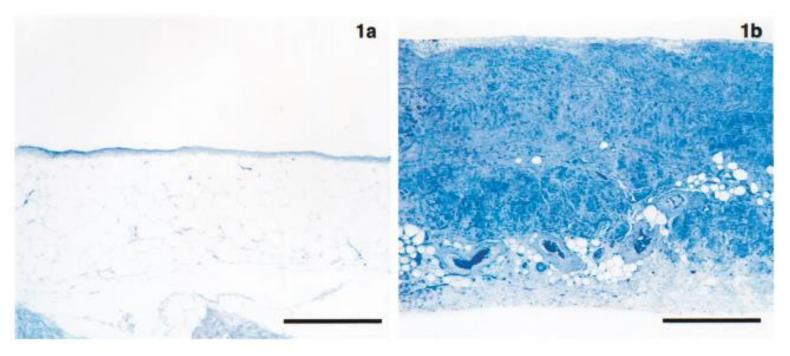
BUT:

A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)


self-care dialysis

svmoosium

aquaporin deficiency


"very very fast" small solute transport (small pores)

fibrotic peritoneal interstitium ("closed membrane", uncoupling)

Pore models: interstitium?

Morphological changes in peritoneal membrane THICKNESS OF SUBMESOTHELIAL COMPACT ZONE

Normal

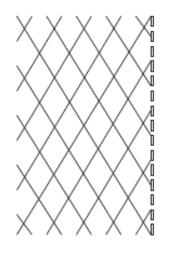
After 9 years of PD

Williams et al. J Am Soc Nephrol 13: 470-479, 2002

self-care dialysis

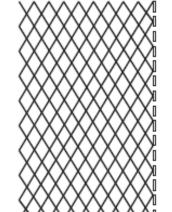
the serial three-pore membrane/fiber matrix model

A Three pore membrane with a normal ("loose") serial fiber matrix


B Three pore membrane with a fibrotic ("dense") serial fiber matrix

$$E = 0.995$$

r, = 6 (Å)


$L_pS\sigma_g$	= 3.66	µL/min/mmHg
PSa	= 9.30	mL/min
σα	= 0.047	
L _p S	= 0.078	mL/min/mmHg

E = 0.96 r_f = 7.5 (Å)

$L_pS\sigma_q$	= 3,02	µL/min/mmHg
PSg	= 13.46	mL/min
σ_{g}	= 0.039	
L _p S	= 0.078	mL/min/mmHg

S = 1

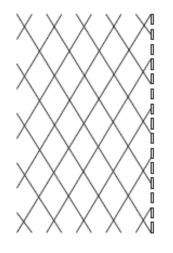
S = 1.8

Rippe et al. Am J Physiol Renal Physiol 292: F1035-F1043, 2007

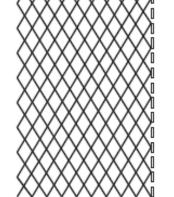
the serial three-pore membrane/fiber matrix model

- A Three pore membrane with a normal ("loose") serial fiber matrix
 - E = 0.995r_f = 6 (Å)

_			
L	"Sσ _g	= 3.66	µL/min/mmHg
P	Sa	= 9.30	mL/min
σ	aŭ.	= 0.047	
L	,s	= 0.078	mL/min/mmHg


B Three pore membrane with a fibrotic ("dense") serial fiber matrix

E = 0.96r_r = 7.5 (Å)


$L_pS\sigma_g$	= 3,02	µL/min/mmHg
PS_{g}	= 13.46	mL/min
σ_{a}	= 0.039	
L _p S	= 0.078	mL/min/mmHg

self-care dialysis

symposium

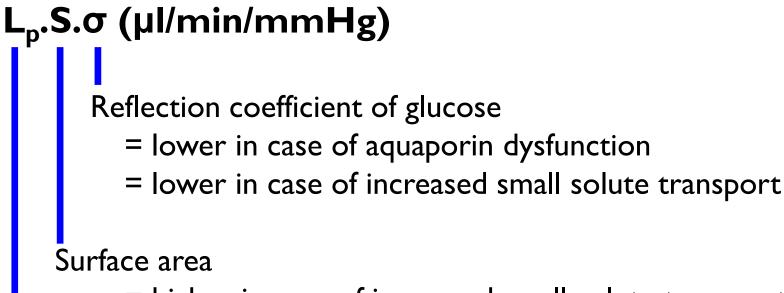
S = 1

S = 1.8

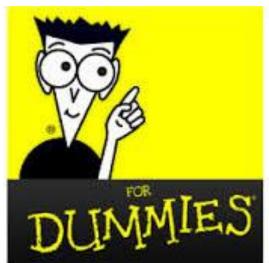

Rippe et al. Am J Physiol Renal Physiol 292: F1035-F1043, 2007

The Osmotic Conductance to Glucose

- = the ability of glucose to exert an osmotic pressure sufficient to cause transperitoneal ultrafiltration
- = L_p.S.σ (μl/min/mmHg)
 - B Three pore membrane with a fibrotic ("dense") serial fiber matrix
 - **E** = 0.96 r_f = 7.5 (Å)


L _n Sσ _n	= 3,02	μL/min/mmHg
PS _q	= 13.46	mL/min
σ_{q}	= 0.039	
L _p S	= 0.078	mL/min/mmHg

Rippe et al. Am J Physiol Renal Physiol 292: F1035-F1043, 2007


self-care dialysis

= higher in case of increased small solute transport

Hydraulic conductivity = lower in case of fibrosis

care dialysis

svmposium

A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

f-care dialysis

svmposium

L_p.S.σ (µl/min/mmHg)

aquaporin deficiency

"very very fast" small solute transport (small pores)

fibrotic peritoneal interstitium ("closed membrane", uncoupling)

	OCG	Free water transport	Small pore water transport		
Reference	normal	normal	normal		
Increased small solute transport	normal	normal	low		
Aquaporin dysfunction	low	low	normal		
Fibrotic interstitium	low	low	low		

A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

elf-care dialysis

aquaporin deficiency

"very very fast" small solute transport (small pores)

fibrotic peritoneal interstitium ("closed membrane", uncoupling)

Mini-PET added value:

quantitative assessment of free water transport and small pore water transport

Double mini-PET added value: quantitative assessment of free water transport and small pore water transport

assessment of osmotic conductance to glucose

Mini-PET I hour of 3.86% assessment of $D/P_{creatinin}$, $D/P_{glucose}$, D/D0 or ΔD_{sodium} calculation of free & small pore water transport

Free water transport (FWT):

FWT (ml) = UFT (ml) - UFSP (ml)

Ultrafiltration over the small pores (UFSP) is assessed using the Na clearance:

UFSP (ml) = $[NaR (mmol)1000]/Na_p(mmol/l)$

NaR (mmol) is the Na removed during the second part of the test with the 3.86% solution. NaR is calculated as follows:

NaR (mmol) = [Drained dialysate volume (l) • Na concentration (mmol/l) in the drained dialysate] – [Volume of dialysate before infusion (l) • Na concentration (mmol/l) in dialysate before infusion]

 $Na_p = plasma sodium.$

Smit *et al.* Perit Dial Int 23: 440-449, 2003 La Milia *et al.* Kidney Int 68: 840-846, 2005

self-care dialysis

Mini-PET I hour of 3.86% assessment of $D/P_{creatinin}$, $D/P_{glucose}$, D/D0 or ΔD_{sodium} calculation of free & small pore water transport Free water transport (FWT): FWT (ml) = UFT (ml) - UFSP (ml)Ultrafiltration over the small pores (UFSP) is assessed using the Na clearance: UFSP (ml) = $[NaR (mmol)1000]/Na_p(mmol/l)$ NaR (mmol) is the Na removed during the second part of the test with the 3.86% solution. NaR is calculated as follows: NaR (mmol) = [Drained dialysate volume (l) • Na concentration (mmol/l) in the drained dialysate] -[Volume of dialysate before infusion (1) • Na concentration (mmol/l) in dialysate before infusion]

Na_p = plasma sodium.

Smit *et al.* Perit Dial Int 23: 440-449, 2003 La Milia *et al.* Kidney Int 68: 840-846, 2005

self-care dialysis

Double mini-PET I hour of I.36%, followed by I hour of 3.86%

From the 3.86% hour: assessment of $D/P_{creatinin}$, $D/P_{glucose}$, D/D0 or ΔD_{sodium} calculation of free & small pore water transport

From the two consecutive dwells of I hour:

Osmotic Glucose Conductance (OCG) (ml/min/mmHg)

$$OCG = ((V_{3.86} - V_{1.36}) / (19.3(G_{3.86} - G_{1.36})60))1.7$$

La Milia et al. Kidney Int 72: 643-650, 2007

self-care dialysis

Double mini-PET

 $D/P_{creatinin}$, $D/P_{glucose}$ cannot be extrapolated to the classical or modified PET result

Ultrafiltration volume after 1 hour 3.86% cannot be referenced to the ISPD definition of UF failure

Rodriguez et al. Blood Purif 25: 497-504, 2007 Waniewski et al. ASAJO J 42: 518-523, 1998 Imholtz et al. Kidney Int 46: 333-340, 1994

self-care dialysis

(double) mini-PET → uni-PET

Uni-PET

I hour of I.36%, followed by 4 hours of 3.86%,

but with temporary drainage after I hour

UNI	-PET		naam:				datum:		
Con- centratie dialysaat	Tijd	Procedure	-			volume In	volume uit	naam dialysaat staal uit	bloed staal
2,27% 2l	s'avonds	. wegen za	ak+ emmer	+klemmei	า		in dagboek pat		
		. 8-10u ter	plaatse						
		No.9.10		2 27 9/					
1,36%2L	то		verblijftijd .36% zak +e		mmon	1	1	1	
1,30/022			taande uitl						
			/er 10 min,						
		rotatie on		00111					
			staal direct	na inloop	1,36%			Dt-60	
		(100ml uit	, staalnam	e en reinfi	usion)				
		. wegen u	itloop nach	ıt					
		60 min ve	rblijftijd sta	art na inlo	op				
		No 60 min	verblijftijo	1 26%					
3,86%21	то		.86% zak+e		mmen		1	1	
-,									
		. uitloop 1	,36% over	20 min					
		. Inloop 3,	86% over 1	0min					
		. dialysaat	staal uitloo	op 1,36%				Dref	
		. dialysaat	staal direc	t na inloop	3,86%			DT0	
		(100 ml ui	t, staalnam	e en reinf	usion)				
		. Wegen u	itloop 1,36	%					
		60 min ve	rblijftijd sta	art na inlo	op				
	700		verblijftijo			1		-	-
	T60		e uitloop o			-			
		. wegen u	oudige uitle	зоргак					
		-	erug laten	inlonen 1	0ml in			DT60	
			oor staaln					2.00	
		. bloedsta							PT60
		120 min v	erblijftijd s	tart na inle	оор				
		Na 120mir	n verblijftij	d 3,86 %					
	T120	-	staal (100					DT120	
		staalname	en reinfu	sion)		<u> </u>			
		Na 240	in verblijft	iid 3 96%			l		
dialysaat	T240		alysaatzak+		emmen	in dagboek pat	1		
zie	1240			C.I.IIICI TKI	cimen	uagooek pat			
voor-		. uitloop c	ver 20 min						
schrift		. staal uitl						DT240	
			ie voorschi	rift)					
		. wegen u							

self-care dialysis

A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

If-care dialysis

svmposium

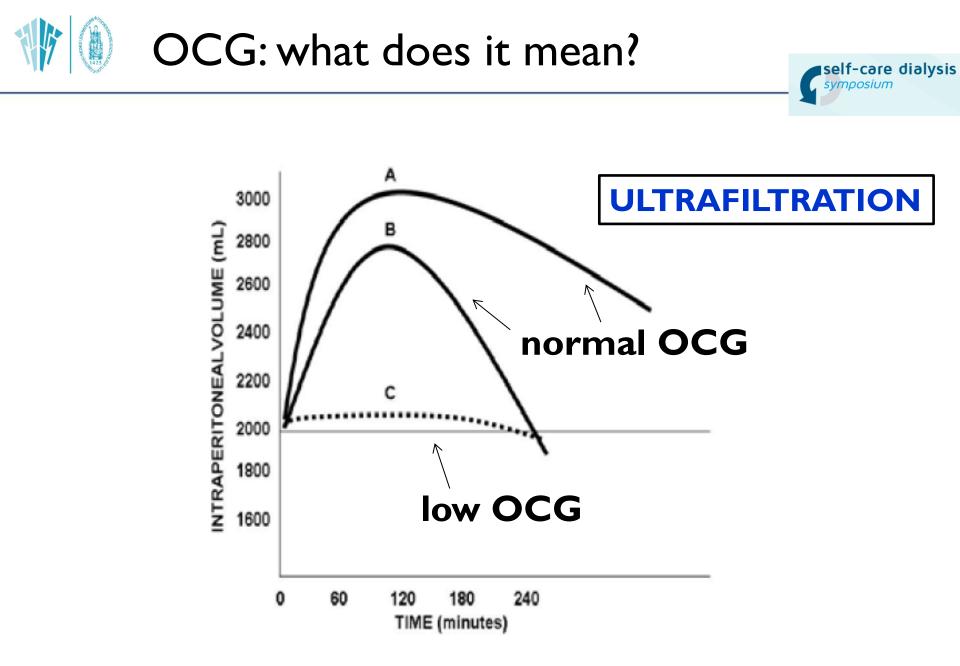
L_p.S.σ (µl/min/mmHg)

aquaporin deficiency

"very very fast" small solute transport (small pores)

fibrotic peritoneal interstitium ("closed membrane", uncoupling)

	OCG	Free water transport	Small pore water transport		
Reference	normal	normal	normal		
Increased small solute transport	normal	normal	low		
Aquaporin dysfunction	low	low	normal		
Fibrotic interstitium	low	low	low		

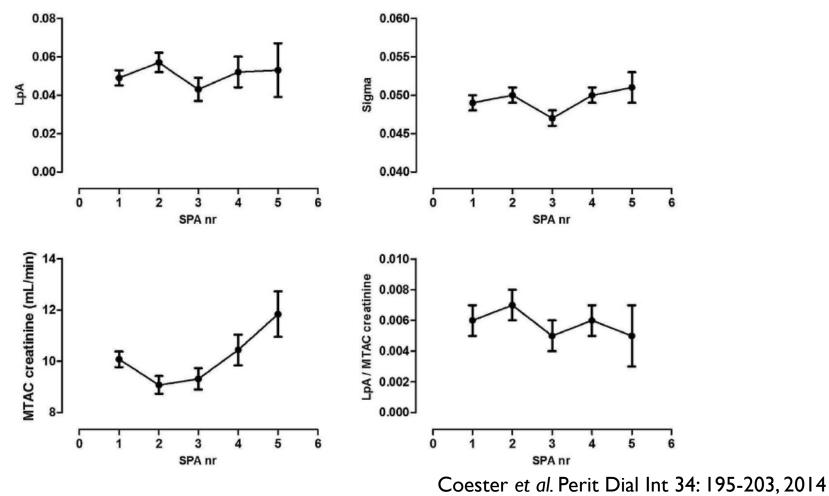

Parameters	Transport groups	Transport groups							
	Slow-average, $n = 6$	Fast-average, $n = 13$	Fast, $n = 5$	ANOVA, P					
L _p S (mL/min/mmHg) σ _G OCG (mL/min/mmHg)	$\begin{array}{c} 0.023 \pm 0.023 \\ 0.139 \pm 0.060 \\ 0.0022 \pm 0.0007 \end{array}$	$\begin{array}{c} 0.030 \pm 0.024 \\ 0.117 \pm 0.078 \\ 0.0023 \pm 0.0008 \end{array}$	$\begin{array}{c} 0.043 \pm 0.046 \\ 0.101 \pm 0.055 \\ 0.0031 \pm 0.0015 \end{array}$	0.53 0.60 0.49					

increasing/fast small solute transport \neq low osmotic conductance to glucose

R	nUF60	UFSP60	FWT60	FWF60	nUF240	$A_0/\Delta x$	D/PCr240	D/D0G240	D/PNa60	DipNa60
OCG	0.91	0.84	0.11	-0.50	-0.09	0.24	0.10	-0.09	-0.01	-0.06
	P < 0.001	P < 0.001	P=0.61	P < 0.05	P = 0.67	P=0.26	P=0.65	P = 0.67	P = 0.97	P = 0.77

Galach et al. Nephrol Dial Transplant 28: 447-454, 2013

self-care dialysis



La Milia et al. J Nephrol 23: 633-647, 2010

Low osmotic conductance to glucose is particularly seen in <u>late</u> ultrafiltration failure.

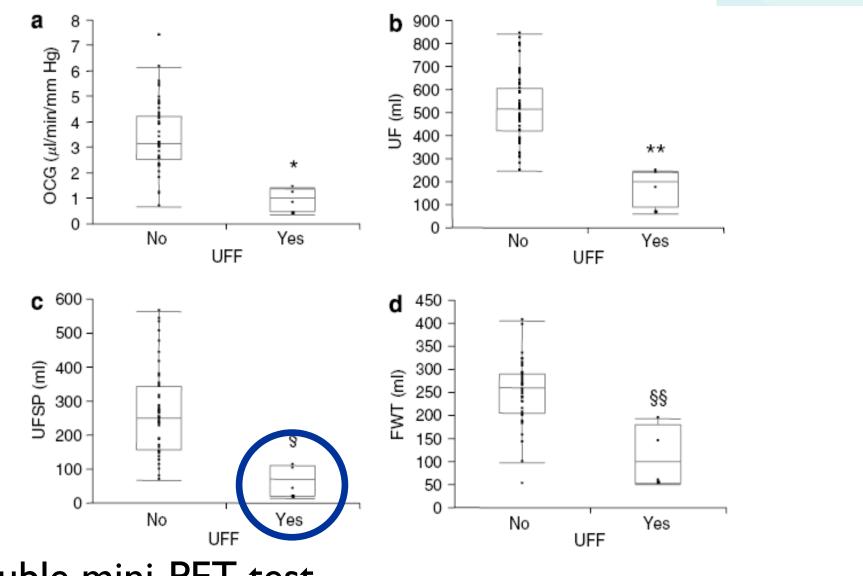
self-care dialysis

A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

If-care dialysis

svmposium

L_p.S.σ (µl/min/mmHg)


aquaporin deficiency

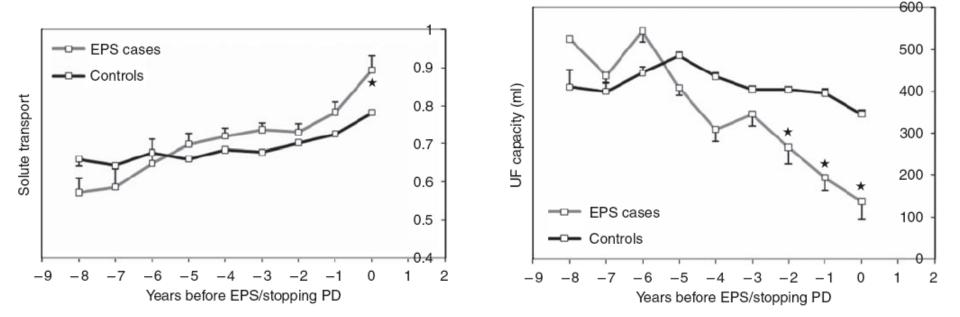
"very very fast" small solute transport (small pores)

fibrotic peritoneal interstitium ("closed membrane", uncoupling)

		0	CG	Free water transport	Small pore water transport	
	Reference	no	rmal	normal	normal	
	Increased small solute transport		rmal	normal	low	
	Aquaporin dysfunction	lo	w	low	normal	
	Fibrotic interstitium	'isolated aquaporin dysfunction probably non-existent' (Rippe a.o.)				
		lo	wc	low	low	

OCG: what does it mean?

Double mini-PET test


La Milia et al. Kidney Int 72: 643-650, 2007

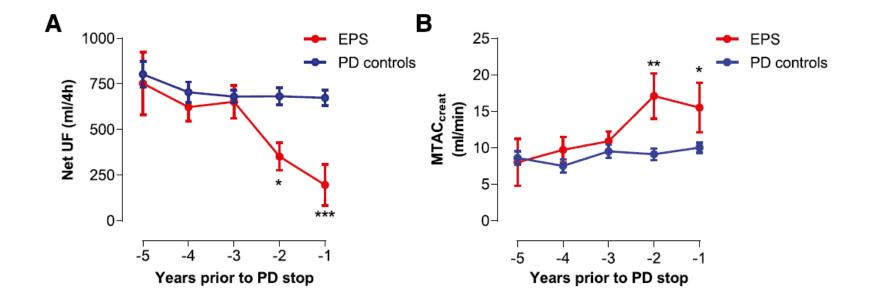
self-care dialysis

OCG: what does it mean?

The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made

Mark L. Lambie^{1,2}, Biju John^{1,2}, Lily Mushahar^{1,2}, Christopher Huckvale^{1,2} and Simon J. Davies^{1,2}

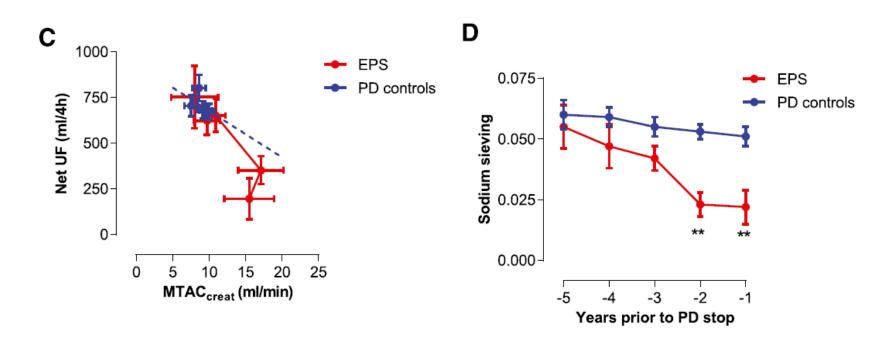
Lambie et al. Kidney Int 78: 611-618, 2010


self-care dialysis

svmoosium

Interstitial Fibrosis Restricts Osmotic Water Transport in Encapsulating Peritoneal Sclerosis

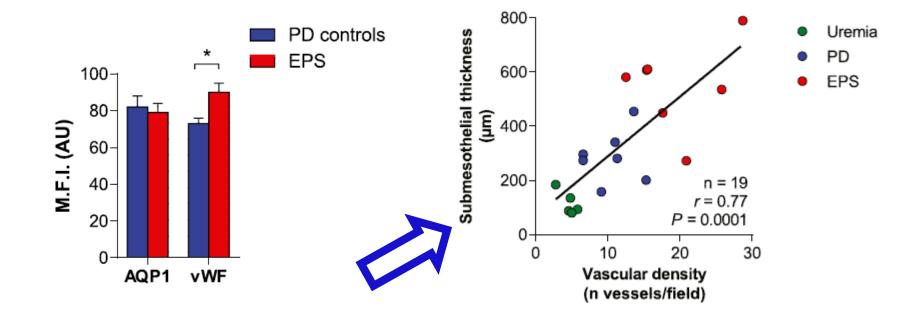
Johann Morelle,* Amadou Sow,* Nicolas Hautem,* Caroline Bouzin,[†] Ralph Crott,[‡] Olivier Devuyst,*[§] and Eric Goffin*


Morelle et al. J Am Soc Nephrol 20: 2521-2533, 2015

self-care dialysis

Interstitial Fibrosis Restricts Osmotic Water Transport in Encapsulating Peritoneal Sclerosis

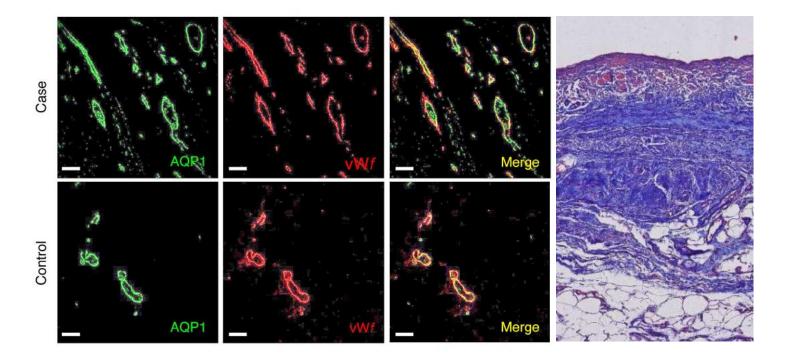
Johann Morelle,* Amadou Sow,* Nicolas Hautem,* Caroline Bouzin,[†] Ralph Crott,[‡] Olivier Devuyst,*[§] and Eric Goffin*


Morelle et al. J Am Soc Nephrol 20: 2521-2533, 2015

self-care dialysis

Interstitial Fibrosis Restricts Osmotic Water Transport in Encapsulating Peritoneal Sclerosis

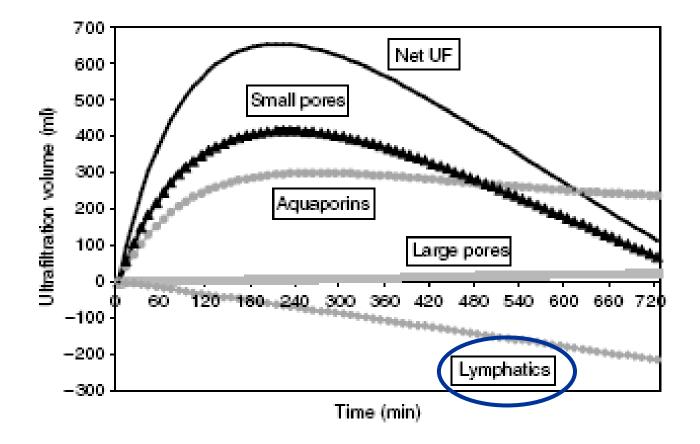
Johann Morelle,* Amadou Sow,* Nicolas Hautem,* Caroline Bouzin,[†] Ralph Crott,[‡] Olivier Devuyst,*[§] and Eric Goffin*



Morelle et al. J Am Soc Nephrol 20: 2521-2533, 2015

self-care dialysis

Ultrafiltration Failure and Impaired Sodium Sieving During Long-Term Peritoneal Dialysis: More Than Aquaporin Dysfunction?



Morelle et al. Perit Dial Int 36: 227-231, 2016

self-care dialysis

ULTRAFILTRATION

Davies Kidney Int 70 (Suppl 103): 76-83, 2006

self-care dialysis

The standard peritoneal permeability analysis: A tool for the assessment of peritoneal permeability characteristics in CAPD patients

MARJA M. PANNEKEET, ALEXANDER L.T. IMHOLZ, DICK G. STRUIJK, GER C.M. KOOMEN, MONIQUE J. LANGEDIJK, NATALIE SCHOUTEN, RUDI DE WAART, JOHAN HIRALALL, and RAYMOND T. KREDIET

1.36% glucose solution + Dextran 70 (Ig/L)

allows calculation of

MTAC (i.e. D/P) of creatinin, urea, urate glucose absorption rate net ultrafiltration

but also

effective lymphatic absorption rate clearances of other molecules (β_2 M, IgG,...)

Pannekeet et al. Kidney Int 48: 866-875, 1995

self-care dialysis

Now you know how to evaluate the peritoneal membrane!

BUT...

...IS IT NOT USEFUL ANYMORE?

...IS IT STILL MANDATORY?

WHO KNOWS THE ANSWER?

3rd self-care dialysis symposium 12th & 13th May 2016

How to evaluate the peritoneal membrane?

3rd self-care dialysis symposium 12th & 13th May 2016

