Overview of home HD strategies from around the world

Tom Cornelis Jessa Hospital Hasselt

May 12, 2016 Brussels, Belgium

Outline

Benefits of home and high dose HD

Risks

Integrated home dialysis care: home HD ánd PD

Integrated ESRD care

Practical and financial aspects

Clinical benefits of high dose HD

	NHD	SDHD
Blood pressure	+++ (PVR reduction)	++ (ECV reduction)
LVH	+++ (afterload reduction)	++ (preload reduction)
LV systolic function	+++	?
Arterial compliance	+++	?
Sleep apnoea	+++	?
Autonomic nervous system	++	?
Phosphate	+++	f(dialysis duration)
Anaemia	++	+
Malnutrition	++	++
Inflammation	++ (CRP, IL-6)	+ (CRP)
Cognition	+	?
Fertility	++	?
Quality of life	++	++

Benefits of high dose HD


Survival benefits versus conventional HD

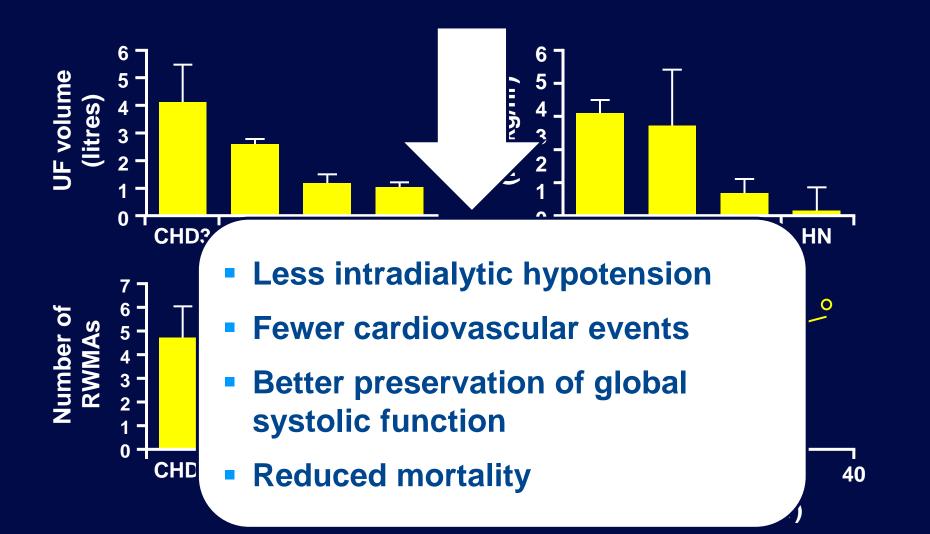
Study	Countries, duration	Intensive Home HD	In-centre CHD	Relative mortality Home HD
Johansen ¹	USA 3 years	94 pts Home NHD (5.7 d/wk)	940 pts USRDS	HR 0.36 p<0.001
Johansen ¹	USA 3 years	43 pts SDHD (5.4 d/wk)	430 pts USRDS	HR 0.64 p=NS
Marshall ²	Australia/New Zealand 72052 patient years	865 pts frequent or extended Home HD	21184 pts	HR 0.53 p<0.05
Lockridge ³	USA 287 patient years	87 pts Home NHD (mean 40±6 h/wk)	87121 incident pts USRDS	<mark>SMR 0.53</mark> p=0.005 (ITT)
Nesrallah⁴	France/USA/Canada 3008 patient years	338 pts intensive Home HD (4.8 x 7.4 h/wk)	1388 pts DOPPS	HR 0.55 p=0.01 (ITT)
Weinhandl ⁵	USA mean 1.8 years	1873 pts daily Home HD (5–6 sessions/wk)	9365 USRDS	HR 0.87 p<0.01 (ITT)

1. Johansen et al. Kidney Int 2009;76:984–90 2. Marshall et al. Am J Kidney Dis 2011;58:782–93 3. Lockridge, Kjellstrand. Hemodial Int 2011;15:211–8 4. Nesrallah et al. J Am Soc Nephrol 2012;23:696–705 5. Weinhandl et al. J Am Soc Nephrol 2012;23:895–904

Quality of life in home and high dose HD: background

- Increased autonomy and functionality¹
- Reduced pill burden^{2,3}
- Liberalisation of diet and fluid intake⁴
- Elimination of transport time
- Continuation of employment⁵
- Improved sleep quality⁶
- Reduction of uremic symptoms⁷
- Reduction of inflammation⁸

• ...


Hall et al. Clin J Am Soc Nephrol 2012;7:782–94; 2. Chertow et al. N Engl J Med 2010;363:2287–300;
Daugirdas et al. J Am Soc Nephrol 2012;23: 727–38; 4. Sikkes et al. J Ren Nutr 2009;19:494–99;
Pierratos. Nephrol Dial Transplant 1999;14:2385–40; 6. Pierratos et al. J Am Soc Nephrol 1997;8:169A;
Manohar et al. Trans Am Soc Artif Intern Organs 1981;27:604–9; 8. Ayus et al. J Am Soc Nephrol 2005;1:2778–88

Quality of life in high dose HD: data

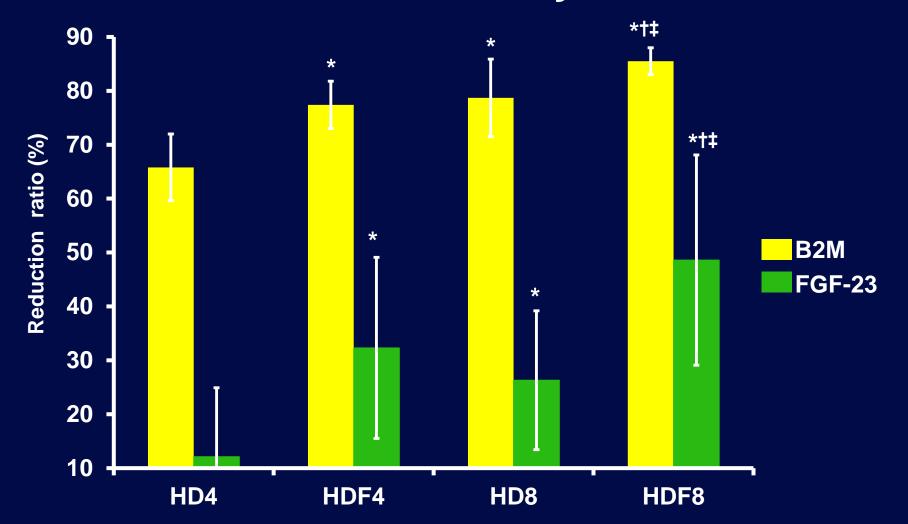
- Improvements in kidney-specific quality of life and burden of kidney disease in multiple studies¹⁻⁴
- Depression score (BDI) significantly improved after 12 months of SDHD in FREEDOM⁵
- Daily FHN trial: no significant change in BDI but improvement in mental health composite (p=0.007) and emotional subscale (p=0.01) scores⁶
- FHN nocturnal trial: no significant changes (due in part to small sample size) but magnitude consistent with daily FHN trial⁷

1. Manns et al. Kidney Int 2009;75:542–9 2. Finkelstein et al. Kidney Int 2012;85:561–9 3. Culleton et al. JAMA 2007;298:1291–9 4. Heidenheim et al. Am J Kidney Dis 2003;42:36–41 5. Jaber et al. Am J Kidney Dis 2010;56:531–9 6. Unruh et al. Am J Kidney Dis 2013;61:748–58 7. Rocco et al. Kidney Int 2011;80:1080–91

Protection against myocardial stunning

High dose HD reduces LVH

Author	Effect (95% CI)	N
Frequent HD		
Buoncristiani (1996)	——————————————————————————————————————	34
Fagugli (1998)	——————————————————————————————————————	23
Traeger (1998)		4
Pinciaroli (1999)	-60.6 (87.4, -33.8)	12
Fagugli (2001)	——————————————————————————————————————	12
Galland (2001)	-59.0 (-98.0, -20.0)	10
Traeger (2001)		15
Chan (2002)		6
Chan (2002)	-33.0 (-48.2, -17.8)	28
Reynolds (2004)		10
Traeger (2004)		17
Ayus (2005)	-46.0 (-57.5, -34.5)	26
Okada (2005)	1.3 (36.0, 38.6)	6
Fagugli (2006)	-54.5 (-85.1, -23.9)	12
He (2006)	-29.5 (-37.0, -22.0)	16
Weinreich (2006)	-33.3 (-76.2, 9.6)	6
Culleton (2007)	-7.1 (-16.7, 2.5)	26
Chertow (2010)	-8.9 (-14.2, -3.6)	101
Rocco (2011)	-4.6 (-13.2, 4.0)	37
Subtotal (l ² =86%, p<0.001	-31.8 (-41.8, -21.8)	
Extended HD		
McGregor (2001)	0 (–41.2, 41.2)	9
Fagugli* (2006)	-55.0 (-76.0, -34.0)	12
Weinreich* (2006)	-23.8 (-51.8, 4.2)	11
Ok (2011)	-24.0 (-32.2, -15.8)	91
Subtotal (l ² =67%, p=0.029)	-29.0 (-47.8, -10.2)	
Overall (l ² =84%, p<0.001)	-31.2 (-39.8, -22.5	
	-100 -75 -50 -25 -0 25 50 Change in left ventricular mass index (q/m^2) Susantitaph Clin J Am So	ong et a

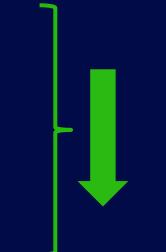

Acute hemodynamic effects in extended dialysis

Parameter	4h HD	4h HDF	8h HD	8h HDF
Peripheral SBP (mm HG)	-21.7	-23.3	-6.7*	-0.5*†
Peripheral DBP (mm HG)	-5.0	-11.5	-1.1†	-1.2 [†]
Central SBP (mm HG)	-19.2	-24.2	-7.1	-3.8
Central DBP (mm HG)	-5.0	-12.1*	-2.6	+3.5 [†]
CO (L/min)	-1.4	-1.6	-0.4†	-0.5†
RBV (%)	-8.1	-9.1	-4.4†	-3.3*†
ET rate (W)	-13.3	-16.2	-14.2	-14.5

*p<0.05 vs 4h HD; †p<0.05 vs 4h HDF

Cornelis T et al. Am J Kidney Dis 2014; 64:247-56

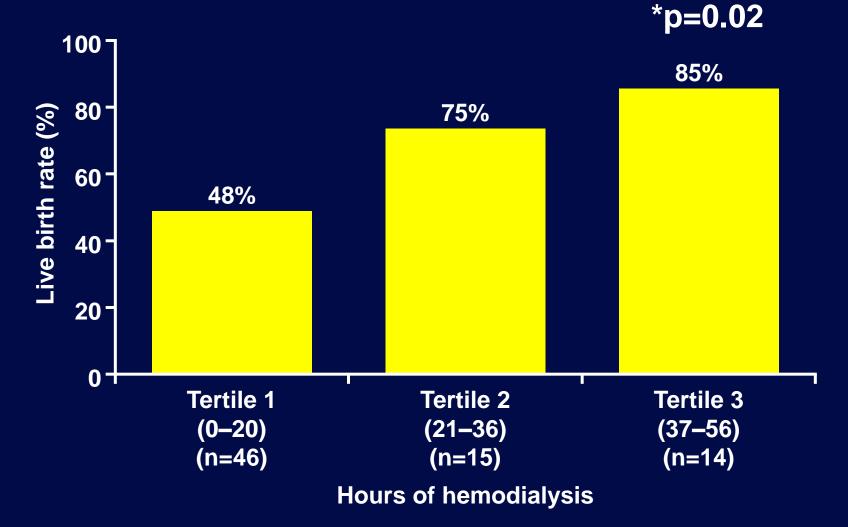
B2M and FGF-23 reduction in extended dialysis



*p<0.05 vs HD4; *p<0.05 vs HDF4; *p<0.05 vs HD8

Cornelis T et al. Am J Kidney Dis 2014;64:247-56.

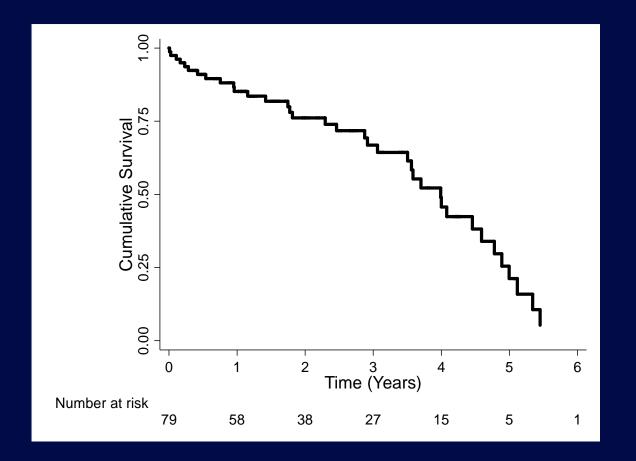
Protective effects of high dose HD in pregnancy


- Uremic toxin levels
- Peripheral vascular resistance
- Hypervolemia
- Blood pressure
- Endothelial dysfunction

Normal placental development Reduced risk of preeclampsia Prevention of polyhydramnios Better feto-maternal outcomes

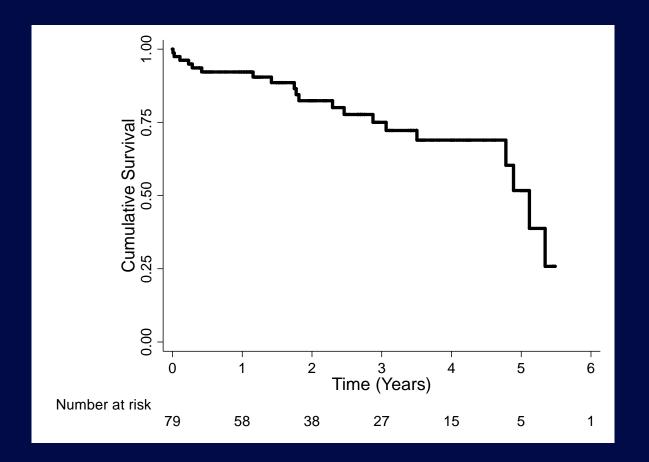
Improved pregnancy outcomes with high dose HD

Hladunewich et al. J Am Soc Nephrol 2014;25:1103-9.


Feasibility of home HD in elderly

 Multi-centre international cohort study: Brussels, Groningen, Helsinki, Maastricht, Manchester and Toronto
Inclusion: patients 65 years or older at start of home HD (n=79)

Primary outcome: time to technique failure or death

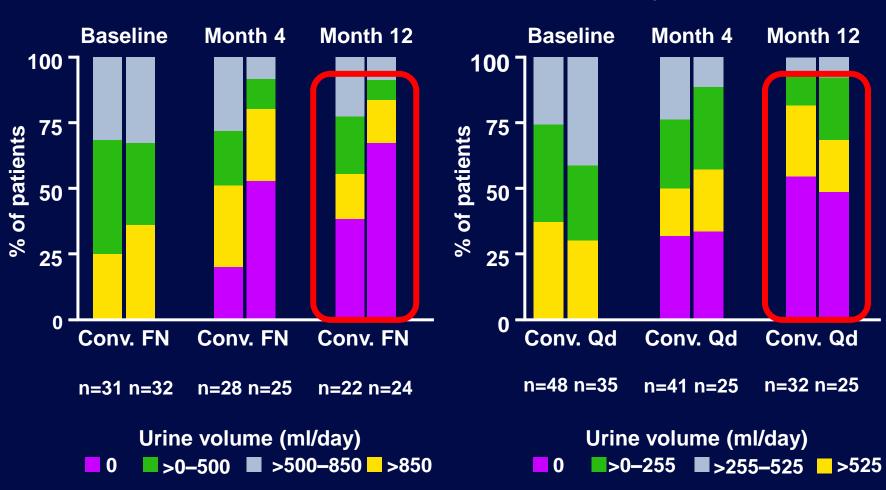

Secondary outcomes: time to technique failure, rates of CV eventshospitalizations-infections, vascular access interventions, need for respite care

Primary outcome event-free survival at 1, 2 and 5 years: 85%, 77% and 24%, resp.

Cornelis T et al. Nephrol Dial Transplant 2014;29:2327-33.

Secondary outcome technique survival at 1, 2 and 5 years: 92, 83 and 56%, resp.

Cornelis T et al. Nephrol Dial Transplant 2014;29:2327-33.


Secondary outcomes: adverse events

Variable	Value
Infections Total episodes Total rate (episodes/patient-year)	16 0.09
Hospitalizations Total episodes Total rate Reasons	103 0.55 CV events (19), volume overload (8), infections (23), access (8)
Cardiovascular events Total episodes Total rate Reasons	17 0.09 MI (3), stroke (1), volume overload (8), arrhythmia (6)
Non-infectious vascular access events Total episodes Angioplasty/declot Permanent loss	130 108 12
Need for respite care	31/63 (49%)

Home and high dose HD: does it all glitter?

- What about residual renal function?
- What about vascular access?
- What about adverse events in the home setting?

FHN: residual kidney function

Nocturnal trial

Daily trial

Vascular access in high dose HD?

	Access		Event Rate		
	Years	Relative Risk (Intensive/Conventional	Difference	Ratio	p-value
Access admissions	0				
Access dysfunction	332		0.116	1.545	0.137
Access infection	185		0.000		
Permanent access failure	228		0.008	1.007	0.872
Arteriovenous fistula (all)	744		0.027	1.991	0.162
Access admissions	0				
Access dysfunction	117		0.429	1.456	0.171
Access infection	47		0.019	0.835	0.874
Permanent access failure	47		- 0.176	1.449	0.547
Arteriovenous graft (all)	212		0.376	1.478	0.139
Access admissions	26		0.153		
Access dysfunction	91		-0.024	0.696	0.516
Access infection	103		0.193	1.683	0.264
Permanent access failure	103		0.341	1.483	0.217
Catheter (all)	322		0.169	1.419	0.133
Access admissions	985		0.073	1.324	0.311
Access dysfunction	924	ter an	-0.209	0.811	0.112
Access infection	254		0.098	1.975	0.307
Permanent access failure	383		0.015	1.213	0.673
Access unknown (all)	2546	ter a second de la constante d	0.009	0.965	0.702
Access admissions	1011		0.073	1.350	0.237
Access dysfunction	1464		-0.049	1.144	0.134
Access infection	589		0.065	1.633	0.106
Permanent access failure	761		0.103	1.307	0.150
All	3824		0.067	1.224	0.009
		0 1 2 3 4 Ratio Cor	5 nelis T et al. B		

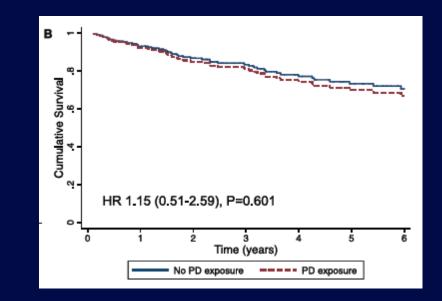
Adverse events in home HD

- 2 Canadian Home HD centers, 500 patient years
- I death and 6 potentially fatal adverse events = 0.06 events/1000 dialysis treatments
- •5/7 events human errors with lapses in protocol adherence

Adverse events in home HD

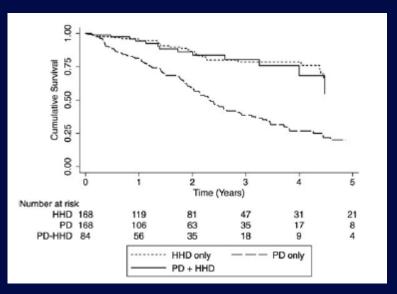
Need for quality assurance framework:

- **1. Case review**
- 2. Technique audit of patient
- 3. Specific questions to programme, e.g. device defect? Human error? Change protocol? Change HD recruitment/retention?


So...not only glitter... What about peritoneal dialysis first?

Home dialysis

- Comparable, if not superior, (early) survival versus facility-based HD
- Preservation of residual renal function?
- Vascular access protection
- Improvement of patient autonomy and quality of life
- Limits dialysis-related costs


Integrated home dialysis care (1)

- Retrospective cohort study Toronto: outcomes of prevalent home HD patients with and without previous PD exposure
- Similar patient and technique survival in both groups, despite difference in vintage and higher co-morbidity burden

Integrated home dialysis care (2)

- Observational cohort study ANZDATA: incident patients
 - PD + home HD
 - PD only
 - Home HD only
- Primary outcome: composite patient and technique survival

Nadeau-Fredette A-C et al. Nephrol Dial Transplant 2015.

Incident PD versus home HD

- Observational cohort ANZDATA: incident PD and home HD between 2000-2012
- Primary outcome: patient survival
- Secondary outcomes: composite patient and technique survival, deathcensored technique survival

Table 3. Adjusted hazard ratios for secondary outcomes comparing home hemodialysis with peritoneal dialysis

Models	HR	95% CI	P Value
Death on specific dialysis modality (on-treatment mortality)			
Main model			
Multivariable adjustment	0.34	0.26 to 0.45	< 0.001
Secondary models			
PS quintile stratification	0.34	0.25 to 0.44	< 0.001
PS-matching (robust)	0.32	0.23 to 0.44	< 0.001
Death or technique failure (composite outcome)			
Main model			
Multivariable adjustment ^a	0.34	0.29 to 0.40	< 0.001
Secondary models			
PS quintile stratification	0.33	0.28 to 0.39	< 0.001
PS-matching (robust)	0.32	0.26 to 0.38	< 0.001
Technique failure only			
Main model			
Multivariable adjustment ^b	0.34	0.28 to 0.41	< 0.001
Secondary models			
PS quintile stratification	0.33	0.27 to 0.40	< 0.001
PS-matching (robust)	0.32	0.25 to 0.40	< 0.001

Nadeau-Fredette AC et al. Clin J Am Soc Nephrol 2015.

Hospitalisation and modality failure in home dialysis

Retrospective, USRDS

Daily home HD versus PD versus in-centre HD

Prevalent patients

Modality switches:

-1% daily home HD switched to PD, whereas 25% of PD switched to home HD

-15% daily home HD switched to in-centre HD compared with 44% of PD

Timing of and preparation for transition from PD to home HD (1)

Loss of residual kidney function

Inadequate weekly kt/V

Recurrent PD-related infections

• Uremic symptoms (subtle!)

Metabolic and/or volume dysregulation

Home visits

Timing of and preparation for transition from PD to home HD (2)

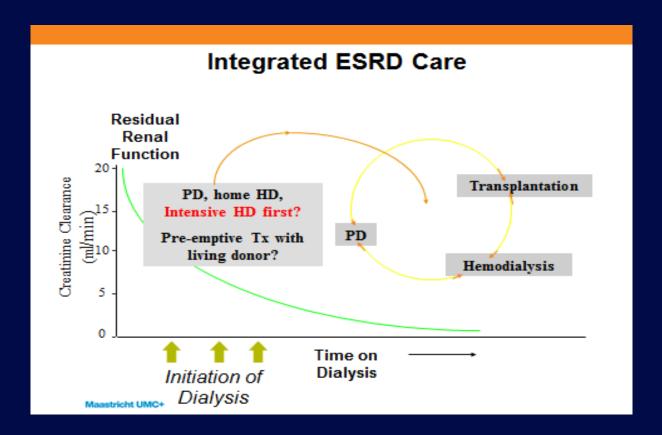
- Pre-) dialysis education: "home dialysis first"
- Home dialysis unit
- Role of social worker, dietician, psychologist
- Patient and partner burn-out
- Timely installation

Barriers for transition PD to home HD?

Different patients choose for PD and for home HD

Subclinical burn-out at the end of PD?

No separate home dialysis unit


No timely education

No timely installation

Different nurses/doctor/location for PD and home HD

Integrated CKD-ESRD care:

-state of the art "CKD-ESRD chain" care -peritoneal dialysis and home HD -medical responsiveness

Also: home dialysis education e.g. fellowships!

Practical aspects of home HD

- Recognition of benefits but lack of direct experience
- Availability of practical resource to facilitate adoption
- Global Forum of Home Hemodialysis: international; nephrologists, home HD nurses, administrators, patient advocates, patient

- Open-source, web-enabled, practical manual:
 - www.ishd.org/home-hd-toolkit
- Recently published in Hemodialysis International

Practical aspects of home HD

Funding and planning

Workforce development

 Infrastructure, water, machines

 Cultivate suitable patients

Patient safety: quality assurance and SAE's

 Patient selection and training

Vascular access

Prescriptions of home hemodialysis

Psychosocial aspects

Practical aspects of home HD

How to start a home HD program?

How to expand a home HD program?

Home HD in Pregnancy

Home HD in Children

How to start a home HD program?

1. Identify a clinical champion

2. Identify key team members (physician, training nurse, community nurse, equipment technician)

3. Identify potential partners/mentors

4. Develop a budget and identify sources of funds

5. Obtain legal and administrative permissions and clearances

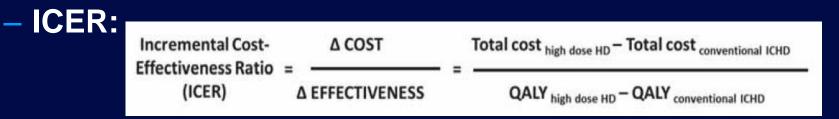
www.ishd.org/home-hd-toolkit

How to start a home HD program?

6. Decide on the range of treatment modalities to be offered to patients (short-daily, conventional, nocturnal, etc)

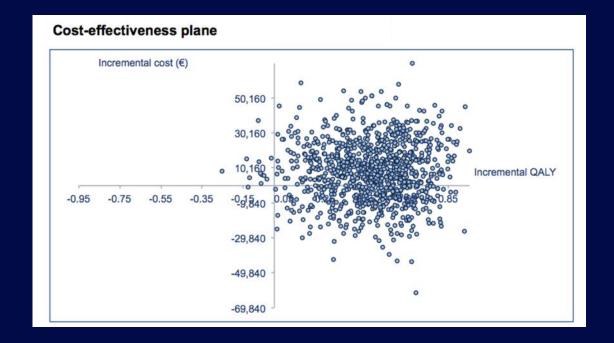
7. Strategize patient recruitment (clinical complexity, housing, social support requirements, etc)

8. Identify a location for patient training

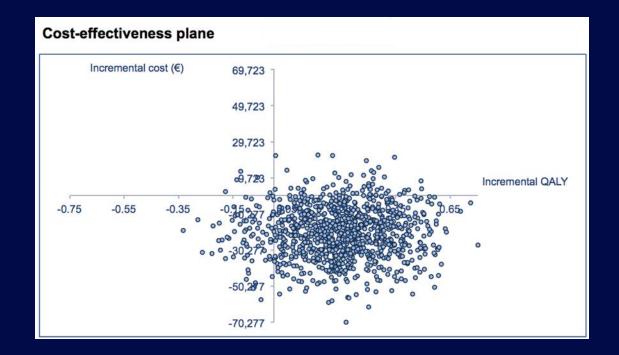

9. Source HD machines (existing pool vs new portable machines)

10. Review program performance (eg, clinical metrics, patientreported outcomes, cost-effectiveness, staff interest and support)

www.ishd.org/home-hd-toolkit


Health economics analysis of home HD

- Home HD is cost-effective compared to hospitalbased HD
- Systematic review (Walker et al, Nephrology 2014)
- Economic analysis of HD in the Netherlands:
 - Markov model



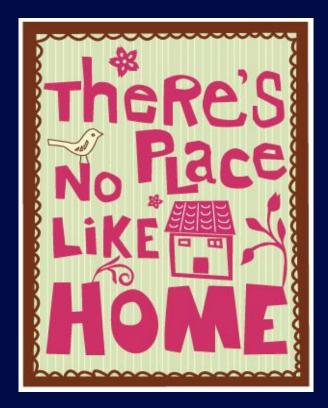
 Conventional and high dose home HD cost-effective compared to in-centre HD

High dose home HD versus conventional in-centre HD

Conventional home HD versus conventional in-centre HD

Beby AT, Cornelis T et al. Submitted.

Conclusions


- Home and high dose HD: indeed excellent options for our ESRD patients
- Potential adverse events should not be ignored: require attention and further study

– Ideal candidate?

- Integrated home dialysis care: PD first, then home HD
 - Prospective studies: quality of life, dialysis access, infectious complications, residual renal function, technique and patient survival, resource utilization and health economics outcomes?
- The role of incremental dialysis needs investigation

Thank you!

