Osmotic Conductance to Glucose: What does it mean?

B. Bammens, MD, PhD
Brussels, May 22 2014

2nd self-care dialysis symposium
Essentials of Peritoneal Dialysis

Osmotic Conductance to Glucose

Aristoteles

384-322 B.C.
Aristotelian Dramatic Arc

START

action
tension grows

climatic event
maximum confusion

resolution
of confusion

unravelling of plot

END
Osmotic Conductance to Glucose

- Essential peritoneal membrane physiology
- Please welcome: OCG!
- OCG: what does it mean?

Aristotelian Dramatic Arc

START

action
tension grows
climatic event
maximum confusion
unravelling of plot

resolution of confusion

END
‘6 barriers for transport’

Stagnant layers at mesothelial and capillary side: not relevant
Mesothelial cell layer: not relevant
Interstitial tissue: (minor) diffusive resistance
Capillary wall: most important restriction barrier

Capillary wall is the most important restriction barrier and determines the peritoneal membrane’s size-selectivity through a system of pores

→ the “PORE THEORIES”
‘Old’ theory: TWO pores

Small pores with constant radius 40-50Å (majority) for transport of low molecular weight solutes

Large pores with various radii, average > 150Å (minority, less than 0.1% of total pore count) for transport of macromolecules
‘Old’ theory: TWO pores

The two-pore theory perfectly explains the diffusive transport of molecules.

DIFFUSION

movement of solutes along their concentration gradient
Diffusive transport

\[J_s = \frac{D_f}{\Delta x} \cdot A \cdot \Delta C \]

(diffusive permeability (membrane- and solute-specific))
Diffusive transport

\[J_s = \frac{D_f}{\Delta x} A \Delta C \]

(Fick’s first law of diffusion)

diffusive permeability (membrane- and solute-specific)

surface area (membrane-specific)
Diffusive transport

\[J_s = \frac{D_f}{\Delta x} . A . \Delta C \]

(Fick's first law of diffusion)

- Diffusive permeability (membrane- and solute-specific)
- Surface area (membrane-specific)
- Concentration difference between plasma and dialysate
Diffusive transport

$$J_s = \frac{D_f \cdot A \cdot \Delta C}{\Delta x}$$

(Fick’s first law of diffusion)

diffusive permeability (membrane- and solute-specific)
surface area (membrane-specific)
concentration difference between plasma and dialysate
mass transfer area coefficient (MTAC)
Diffusive transport

\[J_s = \frac{D_f \cdot A \cdot \Delta C}{\Delta x} \]
(Fick’s first law of diffusion)

\[J_s = MTAC \cdot \Delta C \]

Transport of small molecules up to MW of \(\beta_2M \) (11,8 kDa) NOT limited by size of (large) pores

MTAC for a given solute ONLY determined by effective vascular peritoneal surface area (number of pores)
The two-pore theory perfectly explains the diffusive transport of molecules.

However, it does not explain all aspects of the convective transport of molecules and ultrafiltration.
‘Old’ theory: TWO pores

However, it does not explain all aspects of the convective transport of molecules and ultrafiltration.

CONVECTION

movement of solutes along with fluid as it moves across the membrane (solvent drag)

Bammens Semin Nephrol 31: 127-137, 2011
Convective transport
Convective transport

\[J_s = J_v \cdot \bar{C} \cdot (1 - \sigma) \]
Convective transport

\[J_s = J_v \cdot \bar{C} \cdot (1 - \sigma) \]

water flux (membrane-specific)
Convective transport

\[J_s = J_v \cdot \bar{C} \cdot (1 - \sigma) \]

- water flux (membrane-specific)
- mean solute concentration in the membrane \((P+D)/2\)
Convective transport

\[J_s = J_v \cdot \bar{C} \cdot (1 - \sigma) \]

water flux (membrane-specific)

mean solute concentration in the membrane \((P+D)/2\)

Staverman’s reflection coefficient

= how difficult it is for a solute to be transported by solvent drag across a semi-permeable membrane

(membrane- and solute-specific)
Convective transport

σ Staverman’s reflection coefficient

$= \textit{how difficult it is for a solute to be transported by solvent drag across a semi-permeable membrane}$

S sieving coefficient

$= \textit{how easy it is for a solute to be transported by solvent drag across a semi-permeable membrane}$
For a semi-permeable membrane, S and σ are expected to be perfectly interchangeable concepts!

\[
S = 1 - \sigma
\]

the "ideal" two-pore membrane
Convective transport

\[\sigma \quad \text{Staverman's reflection coefficient} \]

= how difficult it is for a solute to be transported by solvent drag across a semi-permeable membrane

= fraction of maximal osmotic pressure a solute can exert across a semi-permeable membrane

\[S \quad \text{sieving coefficient} \]

= how easy it is for a solute to be transported by solvent drag across a semi-permeable membrane

= fraction of maximal solute transport by solvent drag across a semi-permeable membrane
Convective transport

For a semi-permeable membrane, S and σ are expected to be perfectly interchangeable concepts!

![Diagram showing the relationship between S and σ with the equation $S = 1 - \sigma$.](image)

σ_{glucose} very low!
For a semi-permeable membrane, \(S \) and \(\sigma \) are expected to be perfectly interchangeable concepts!

However, the peritoneal membrane seems not to fulfill this “ideal semi-permeable membrane” criteria.

\[\sigma_{\text{glucose}} = 0.03 \]

\[S = 1 - \sigma \]
‘New’ theory: THREE pores

Small pores with constant radius 40-50Å
Large pores with various radii, average > 150Å

Ultra-small pores with radius 3-5Å

for transport of water only
accounts for 1/2 of transcapillary water transport

(explains good osmotic properties of glucose)
‘New’ theory: THREE pores

Ultra-small pores with radius 3-5Å

Fig. 1. Schematic model representing CHIP integral membrane protein within the membrane lipid bilayer. Notable features include 1) homotetrameric complex with 1 subunit bearing a polylactosaminoglycan, 2) minimal polypeptide mass extending above or below the lipid bilayer, and 3) possible individual water pore within each subunit.

‘New’ theory: THREE pores

ULTRAFILTRATION

Davies Kidney Int 70 (Suppl 103): 76-83, 2006
‘New’ theory: THREE pores

ULTRAFILTRATION

[Graph showing ultrafiltration volume over time for different categories: Net UF, Small pores, Aquaporins, Large pores, Lymphatics.]

Davies Kidney Int 70 (Suppl 103): 76-83, 2006
Aristotelian Dramatic Arc

START

climatic event
maximum confusion

action
tension grows

unravelling of plot

resolution
of confusion

END
The original 2.27% PET test

SOLUTE TRANSPORT

(D/Pcreatinine reflects effective vascular surface area, rather than the intrinsic permeability of the membrane!)

The original 2.27% PET test

The original 2.27% PET test

ULTRAFILTRATION

SOLUTE TRANSPORT

The original 2.27% PET test

ULTRAFILTRATION

Davies Kidney Int 70 (Suppl 103): 76-83, 2006
The aquaporins?

ULTRAFILTRATION

Davies Kidney Int 70 (Suppl 103): 76-83, 2006
With a hypertonic dialysate solution, dialysate Na^+ concentration will decrease initially due to water-only transport across aquaporins.

= SODIUM SIEVING

Time profile $D/P_{\text{sodium}}, D_{\text{sodium}}$ (or D/D_0 or ΔD_{sodium} at 1 hour) CAN BE USED TO ASSESS THE CONTRIBUTION OF AQUAPORIN TRANSPORT TO ULTRAFILTRATION

ISPD definition of UF failure = $< 400\text{ml UF after 4 hours of 3.86% glucose}$
Aristotelian Dramatic Arc

START

- action tension grows
- climatic event
- maximum confusion

END

- unravelling of plot
- resolution of confusion
BUT:
A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

aquaporin deficiency
“very very fast” small solute transport (small pores)
BUT:
A flat SODIUM SIEVING profile may have different meanings!
(at least theoretically)

aquaporin deficiency
“very very fast” small solute transport (small pores)
fibrotic peritoneal interstitium (“closed membrane”, uncoupling)
Pore models: interstitium?

Morphological changes in peritoneal membrane
THICKNESS OF SUBMESOTHERelial COMPACT ZONE

Pore models: interstitium?

the serial three-pore membrane/fiber matrix model

A Three pore membrane with a normal ("loose") serial fiber matrix

\[\varepsilon = 0.995 \]
\[r_f = 6 \text{ (Å)} \]

\[
\begin{aligned}
L_p S & = 3.66 \text{ μL/min/mmHg} \\
PS_g & = 9.30 \text{ mL/min} \\
\sigma_g & = 0.047 \\
L_p S & = 0.078 \text{ mL/min/mmHg}
\end{aligned}
\]

B Three pore membrane with a fibrotic ("dense") serial fiber matrix

\[\varepsilon = 0.96 \]
\[r_f = 7.5 \text{ (Å)} \]

\[
\begin{aligned}
L_p S & = 3.02 \text{ μL/min/mmHg} \\
PS_g & = 13.46 \text{ mL/min} \\
\sigma_g & = 0.039 \\
L_p S & = 0.078 \text{ mL/min/mmHg}
\end{aligned}
\]

Pore models: interstitium?

the serial three-pore membrane/fiber matrix model

A. Three pore membrane with a normal ("loose") serial fiber matrix

- $E = 0.995$
- $r_f = 6 \, \text{Å}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_p\sigma_g$</td>
<td>3.66 μL/min/mmHg</td>
</tr>
<tr>
<td>PS_g</td>
<td>9.30 mL/min</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.047 mL/min/mmHg</td>
</tr>
<tr>
<td>L_pS</td>
<td>0.078 mL/min/mmHg</td>
</tr>
</tbody>
</table>

B. Three pore membrane with a fibrotic ("dense") serial fiber matrix

- $E = 0.96$
- $r_f = 7.5 \, \text{Å}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_p\sigma_g$</td>
<td>3.02 μL/min/mmHg</td>
</tr>
<tr>
<td>PS_g</td>
<td>13.46 mL/min</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.039 mL/min/mmHg</td>
</tr>
<tr>
<td>L_pS</td>
<td>0.078 mL/min/mmHg</td>
</tr>
</tbody>
</table>

Aristotelian Dramatic Arc

- **START**
 - Action
 - Tension grows

- **climatic event maximum confusion**

- **unravelling of plot**

- **END**
 - Resolution of confusion
The Osmotic Conductance to Glucose

= the ability of glucose to exert an osmotic pressure sufficient to cause transperitoneal ultrafiltration

= \(L_p S \sigma \) (\(\mu l/min/mmHg \))

OCG: the Dummy’s view

$L_p.S.\sigma$ (μl/min/mmHg)

- Reflection coefficient of glucose
 - lower in case of aquaporin dysfunction
 - lower in case of increased small solute transport

- Surface area
 - higher in case of increased small solute transport

- Hydraulic conductivity
 - lower in case of fibrosis
OCG: the Dummy’s view

A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

- aquaporin deficiency
- “very very fast” small solute transport (small pores)
- fibrotic peritoneal interstitium (“closed membrane”, uncoupling)

Table

<table>
<thead>
<tr>
<th></th>
<th>OCG</th>
<th>Free water transport</th>
<th>Small pore water transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>Increased small solute transport</td>
<td>normal</td>
<td>normal</td>
<td>low</td>
</tr>
<tr>
<td>Aquaporin dysfunction</td>
<td>low</td>
<td>low</td>
<td>normal</td>
</tr>
<tr>
<td>Fibrotic interstitium</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>

\[L_{p.S.\sigma} (\mu l/min/mmHg) \]
A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

- aquaporin deficiency
- “very very fast” small solute transport (small pores)
- fibrotic peritoneal interstitium (“closed membrane”, uncoupling)

<table>
<thead>
<tr>
<th></th>
<th>OCG</th>
<th>Free water transport</th>
<th>Small pore water transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>Increased small solute transport</td>
<td>normal</td>
<td>normal</td>
<td>low</td>
</tr>
<tr>
<td>Aquaporin dysfunction</td>
<td>low</td>
<td>low</td>
<td>normal</td>
</tr>
<tr>
<td>Fibrotic interstitium</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>

\[
L_p S \sigma \text{ (}\mu\text{l/min/mmHg)}
\]

‘isolated aquaporin dysfunction probably non-existent’ (Rippe a.o.)
Aristotelian Dramatic Arc

START

- action
- tension grows

climatic event
maximum confusion

unravelling of plot

resolution of confusion

END
OCG: what does it mean?

- **Normal OCG**: Curve A
- **Low OCG**: Curve C

OCG: what does it mean?

Double mini-PET test

OCG: what does it mean?

Double mini-PET test

OCG: what does it mean?

The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made.

Mark L. Lambie¹,², Biju John¹,², Lily Mushahar¹,², Christopher Huckvale¹,² and Simon J. Davies¹,²

Lambie et al. Kidney Int 78: 611-618, 2010
Aristotelian Dramatic Arc

- Action: tension grows
- Climatic event: maximum confusion
- Resolution: unravelling of plot
- Start
- End
Aristotelian Dramatic Arc

climatic event
maximum confusion
unravelling of plot
resolution of confusion
This is me!

action
tension grows

This is me!

This is Johann Morelle.
Osmotic Conductance to Glucose: What does it mean?

B. Bammens, MD, PhD
Brussels, May 22 2014