Osmotic Conductance to Glucose: What does it mean?

B. Bammens, MD, PhD

2nd self-care dialysis symposium

Aristoteles 384-322 B.C.

Aristotelian Dramatic Arc

unravelling of plot

action tension grows

resolution of confusion

START

END

Osmotic Conductance to Glucose

- Essential peritoneal membrane physiology
- Please welcome: OCG!
- OCG: what does it mean?

'6 barriers for transport'

Stagnant layers at mesothelial and capillary side: not relevant

Mesothelial cell layer: not relevant

Interstitial tissue: (minor) diffusive resistance

Capillary wall: most important restriction barrier

'2D membrane with pores'

Capillary wall is the most important restriction barrier and determines the peritoneal membrane's size-selectivity through a system of pores

→ the "PORE THEORIES"

'Old' theory:TWO pores

Small pores with constant radius 40-50Å (majority) for transport of low molecular weight solutes

Large pores with various radii, average > 150Å
(minority, less than 0.1% of total pore count)
for transport of macromolecules

Blood in peritoneal capillaries

Urea creatinine Macromolecules

Endothelium Glucose

Mesothelium

'Old' theory:TWO pores

The two-pore theory perfectly explains the diffusive transport of molecules.

DIFFUSION

movement of solutes along their concentration gradient

$$J_s = \frac{D_f}{\Delta x} . A. \Delta C$$
 (Fick's first law of diffusion)

diffusive permeability (membrane- and solute-specific)

$$\mathbf{J_s} = \frac{\mathbf{D_f}}{\Delta \mathbf{x}} \cdot \mathbf{A} \cdot \Delta \mathbf{C}$$
 (Fig.

(Fick's first law of diffusion)

diffusive permeability (membrane- and solute-specific)

surface area (membrane-specific)

$$J_{s} = \frac{D_{f}}{\Delta x} . A. \Delta C$$

(Fick's first law of diffusion)

diffusive permeability (membrane- and solute-specific)

surface area (membrane-specific)

concentration difference between plasma and dialysate

$$J_{s} = \frac{D_{f}}{\Delta x} . A. \Delta C$$

(Fick's first law of diffusion)

diffusive permeability (membrane- and solute-specific)

surface area (membrane-specific)

concentration 6

asına and dialysate

mass transfer area coefficient (MTAC)

$$J_{s} = \frac{D_{f}}{\Delta x}.A.\Delta C$$

(Fick's first law of diffusion)

$$J_s = MTAC.\Delta C$$

Transport of small molecules up to MW of β_2M (11,8 kDa) NOT limited by size of (large) pores

MTAC for a given solute ONLY determined by effective vascular peritoneal surface area (number of pores)

'Old' theory: TWO pores

The two-pore theory perfectly explains the diffusive transport of molecules.

However, it does <u>not</u> explain <u>all</u> aspects of the convective transport of molecules and ultrafiltration.

SOLUTE REMOVAL

ULTRAFILTRATION

National Kidney Foundation™

ULTRAFILTRATION

European Renal Best Practice

Van Biesen et al. Nephrol Dial Transplant 25: 2052-2062, 2010

*Consider use of specialized

software to model prescription

sieving: suspect aquaporin

deficiency; consider transfer to HD

'Old' theory:TWO pores

However, it does <u>not</u> explain <u>all</u> aspects of the convective transport of molecules and ultrafiltration.

CONVECTION

movement of solutes along with fluid as it moves across the membrane (solvent drag)

$$J_s = J_v.\bar{C}.(1-\sigma)$$

$$J_s = J_v \bar{C} \cdot (1-\sigma)$$

water flux (membrane-specific)

$$J_s = J_v \bar{C} (1-\sigma)$$

water flux (membrane-specific)

mean solute concentration in the membrane (P+D)/2

$$J_s = J_v.\bar{C}.(1-\sigma)$$

water flux (membrane-specific)

mean solute concentration in the membrane (P+D)/2

Staverman's reflection coefficient

= how difficult it is for a solute to be transported by solvent drag across a semi-permeable membrane (membrane- and solute-specific)

σ Staverman's reflection coefficient

= how difficult it is for a solute to be transported by solvent drag across a semi-permeable membrane

S sieving coefficient

= how easy it is for a solute to be transported by solvent drag across a semi-permeable membrane

For a semi-permeable membrane, S and σ are expected to be perfectly interchangeable concepts!

σ Staverman's reflection coefficient

- = how difficult it is for a solute to be transported by solvent drag across a semi-permeable membrane
- = fraction of maximal osmotic pressure a solute can exert across a semi-permeable membrane

S sieving coefficient

- = how easy it is for a solute to be transported by solvent drag across a semi-permeable membrane
- = fraction of maximal solute transport by solvent drag across a semi-permeable membrane

For a semi-permeable membrane, S and σ are expected to be perfectly interchangeable concepts!

Apparent $\sigma_{glucose}$ = higher

For a semi-permeable membrane, S and σ are expected to be perfectly interchangeable concepts!

However, the peritoneal membrane seems not to fulfill this "ideal semi-permeable membrane" criteria.

(I) 'New' theory: THREE pores

Small pores with constant radius 40-50Å Large pores with various radii, average > 150Å

Ultra-small pores with radius 3-5Å

for transport of water only accounts for 1/2 of transcapillary water transport

(explains good osmotic properties of glucose)

'New' theory: THREE pores

Ultra-small pores with radius 3-5Å

Fig. 1. Schematic model representing CHIP integral membrane protein within the membrane lipid bilayer. Notable features include 1) homotetrameric complex with 1 subunit bearing a polylactosaminoglycan, 2) minimal polypeptide mass extending above or below the lipid bilayer, and 3) possible individual water pore within each subunit.

(I) 'New' theory: THREE pores

ULTRAFILTRATION

'New' theory: THREE pores

ULTRAFILTRATION

Aristotelian Dramatic Arc

Start: 0 hours

2 hours

SOLUTE TRANSPORT

(D/Pcreatinine reflects effective vascular surface area, rather than the intrinsic permeability of the membrane!)

SOLUTE TRANSPORT

PERITONEAL EQUILIBRATION TEST

ULTRAFILTRATION

SOLUTE TRANSPORT

ULTRAFILTRATION

The aquaporins?

ULTRAFILTRATION

Modified (3.86%) PET test

With a hypertonic dialysate solution, dialysate Na⁺ concentration will decrease initially due to water-only transport across aquaporins.

= SODIUM SIEVING

Time profile D/P_{sodium}, D_{sodium}
(or D/D0 or ΔD_{sodium} at I hour)
CAN BE USED TO ASSESS THE
CONTRIBUTION OF AQUAPORIN
TRANSPORT TO ULTRAFILTRATION

ISPD definition of UF failure = < 400ml UF after 4 hours of 3.86% glucose

Black: 1.36%; blue: 2.27%; red: 3.86% glucose solution

Modified (3.86%) PET test

BUT: A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

aquaporin deficiency "very very fast" small solute transport (small pores)

Modified (3.86%) PET test

BUT: A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

aquaporin deficiency

"very very fast" small solute transport (small pores)

fibrotic peritoneal interstitium ("closed membrane", uncoupling)

Pore models: interstitium?

Morphological changes in peritoneal membrane THICKNESS OF SUBMESOTHELIAL COMPACT ZONE

Normal

After 9 years of PD

Pore models: interstitium?

the serial three-pore membrane/fiber matrix model

A Three pore membrane with a normal ("loose") serial fiber matrix

$$\mathcal{E} = 0.995$$

 $r_r = 6 (Å)$

$$L_pS\sigma_g = 3.66$$
 $\mu L/min/mmHg$
 $PS_g = 9.30$ mL/min
 $\sigma_g = 0.047$
 $L_pS = 0.078$ $mL/min/mmHg$

S = 1

B Three pore membrane with a fibrotic ("dense") serial fiber matrix

$$\varepsilon = 0.96$$

 $r_f = 7.5 (A)$

$$\begin{array}{lll} \text{L}_{\text{p}}\text{S}\sigma_{\text{g}} = 3.02 & \mu\text{L/min/mmHg} \\ \text{PS}_{\text{g}} = 13.46 & \text{mL/min} \\ \sigma_{\text{g}} = 0.039 & \\ \text{L}_{\text{p}}\text{S} = 0.078 & \text{mL/min/mmHg} \end{array}$$

$$S = 1.8$$

Pore models: interstitium?

the serial three-pore membrane/fiber matrix model

A Three pore membrane with a normal ("loose") serial fiber matrix

$$\mathcal{E} = 0.995$$

 $r_f = 6 (Å)$

$$L_pS\sigma_g = 3.66$$
 $\mu L/min/mmHg$
 $PS_g = 9.30$ mL/min
 $\sigma_g = 0.047$
 $L_pS = 0.078$ $mL/min/mmHg$

$$\mathcal{E} = 0.96$$

 $r_f = 7.5 (Å)$

$L_pS\sigma_g$	= 3,02	μL/min/mmHg
PS _g	= 13.46	mL/min
σ_{g}	= 0.039	
L _p S	= 0.078	mL/min/mmHg

$$S = 1$$

$$S = 1.8$$

Please welcome: OCG!

The Osmotic Conductance to Glucose

- = the ability of glucose to exert an osmotic pressure sufficient to cause transperitoneal ultrafiltration
- = $L_p.S.\sigma$ (µl/min/mmHg)
 - B Three pore membrane with a fibrotic ("dense") serial fiber matrix

$$E = 0.96$$

r_r = 7.5 (Å)

$L_nS\sigma_n$	= 3,02	μL/min/mmHg
PS _a	= 13.46	mL/min
σ_{a}	= 0.039	
LpS	= 0.078	mL/min/mmHg

OCG: the Dummy's view

$L_p.S.\sigma$ (µl/min/mmHg)

Reflection coefficient of glucose

- = lower in case of aquaporin dysfunction
- = lower in case of increased small solute transport

Surface area

= higher in case of increased small solute transport

Hydraulic conductivity

= lower in case of fibrosis

OCG: the Dummy's view

A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

 $L_p.S.\sigma$ (µl/min/mmHg)

aquaporin deficiency

"very very fast" small solute transport (small pores)

fibrotic peritoneal interstitium ("closed membrane", uncoupling)

	OCG	Free water transport	Small pore water transport
Reference	normal	normal	normal
Increased small solute transport	normal	normal	low
Aquaporin dysfunction	low	low	normal
Fibrotic interstitium	low	low	low

OCG: the Dummy's view

A flat SODIUM SIEVING profile may have different meanings! (at least theoretically)

L_p.S.σ (μl/min/mmHg)

aquaporin deficiency

"very very fast" small solute transport (small pores)

fibrotic peritoneal interstitium ("closed membrane", uncoupling)

		OCG	Free water transport	Small pore water transport	
Refe	erence	normal	normal	normal	
Increased sm solute transp Aquaporin dysfunction Fibrotic interstitium	normal	normal	low		
	•	low	low	normal	
	'isolated aquaporin dysfunction probably non-existent' (Rippe a.o.)				
	low	low	low		

action tension grows

START

unravelling of plot

resolution of confusion

END

Double mini-PET test

La Milia et al. Kidney Int 72: 643-650, 2007

Double mini-PET test

La Milia et al. Kidney Int 72: 643-650, 2007

The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made

Mark L. Lambie^{1,2}, Biju John^{1,2}, Lily Mushahar^{1,2}, Christopher Huckvale^{1,2} and Simon J. Davies^{1,2}

climatic event maximum confusion

unravelling of plot

action tension grows

resolution of confusion

END

START

Osmotic Conductance to Glucose: What does it mean?

B. Bammens, MD, PhD

2nd self-care dialysis symposium