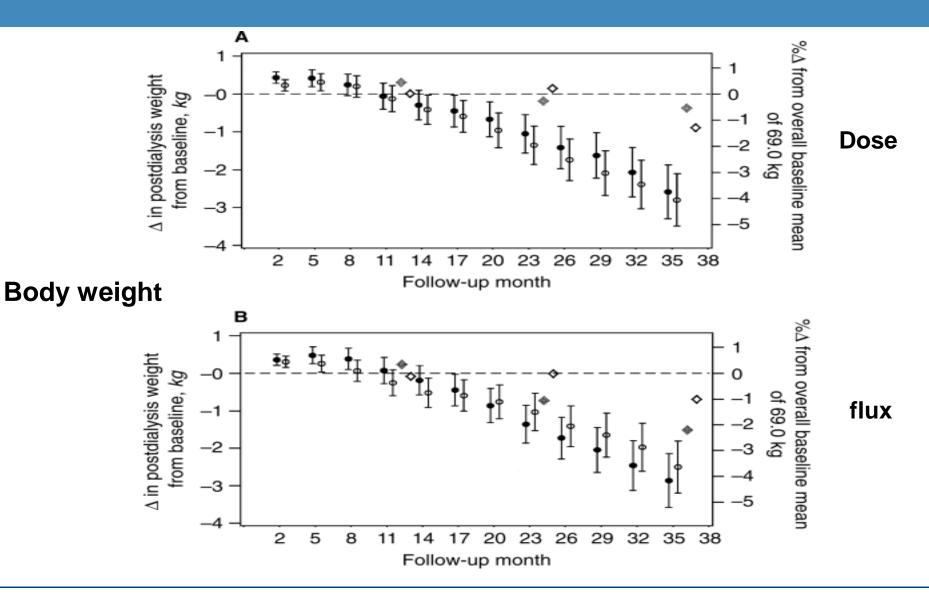


4ème Symposium de Dialyse Extra-Hospitalière

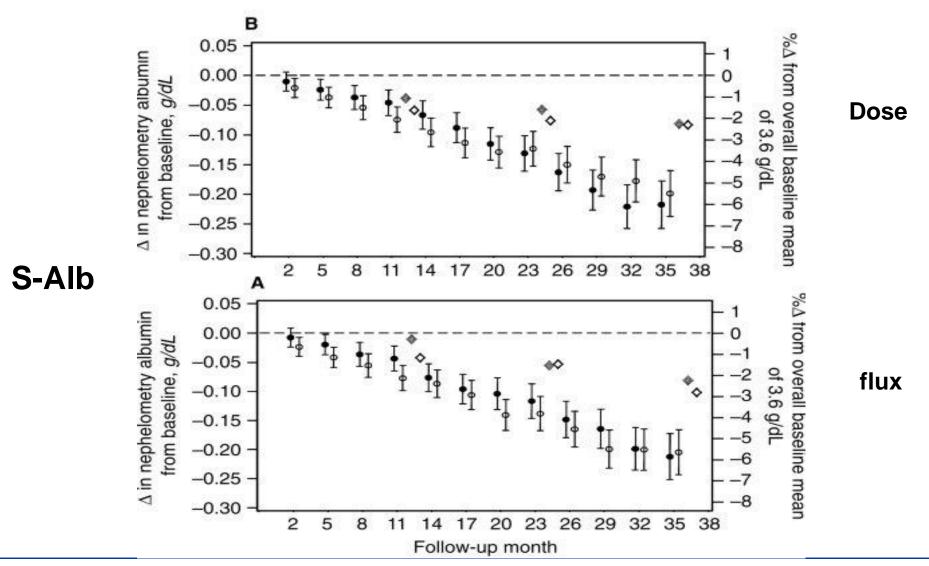
Les 6 et 7 juin 2018

Square-Brussels Meeting Centre

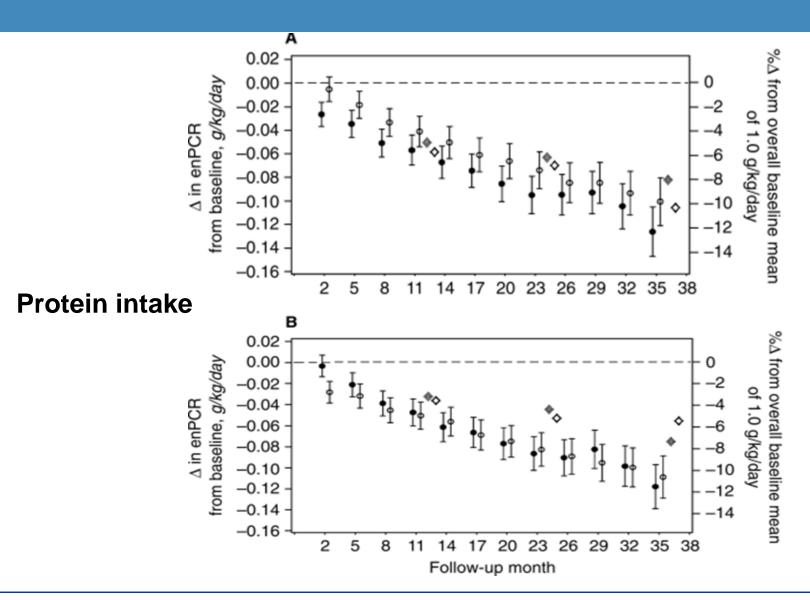

Nutrition en dialyse : controverses

La relation dialyse et nutrition

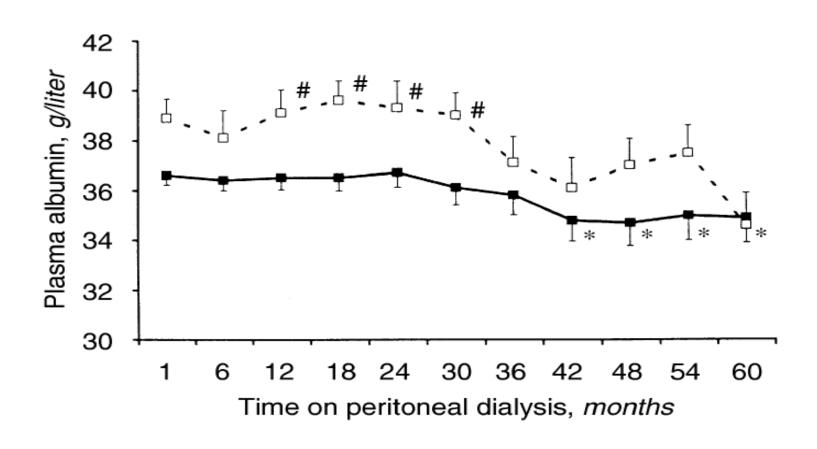
Charles Chazot, MD NephroCare Tassin-Charcot Sainte Foy Les Lyon, France



HEMO study lessons (1)



HEMO study lessons (2)



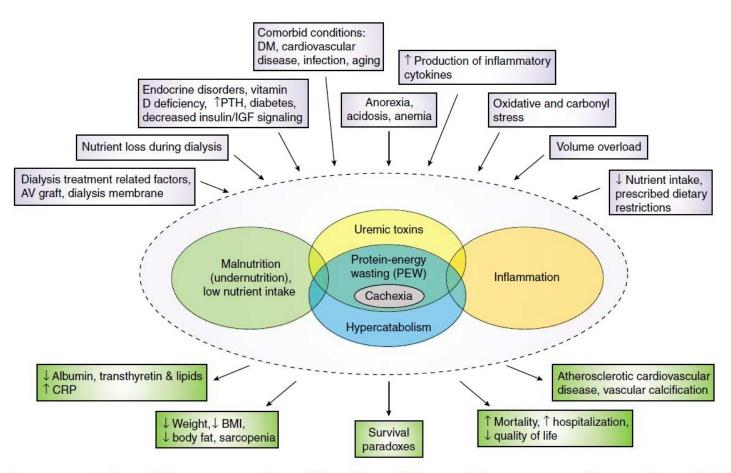
HEMO study lessons (3)

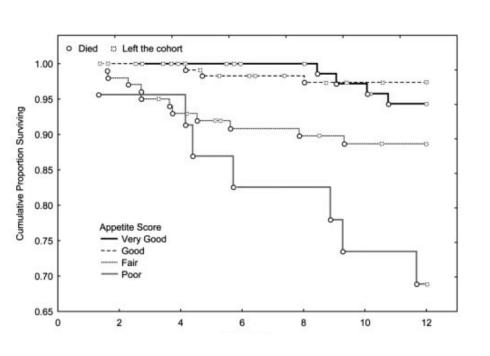
S-Albumin in PD patients

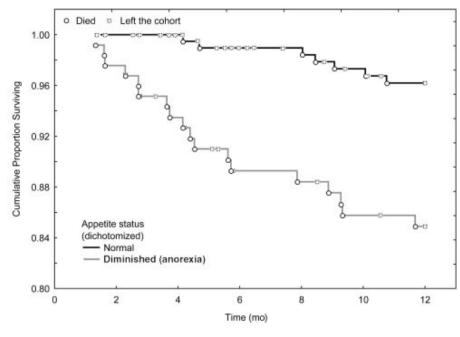
Idem for BW and Mid-arm circumference

Causes of PEW in dialysis patients

A multifactorial issue

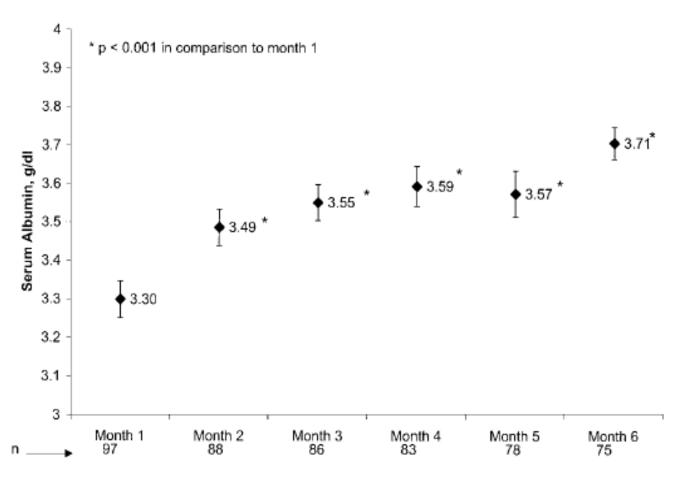



Figure 1 Schematic representation of the causes and manifestations of the protein-energy wasting syndrome in kidney disease.

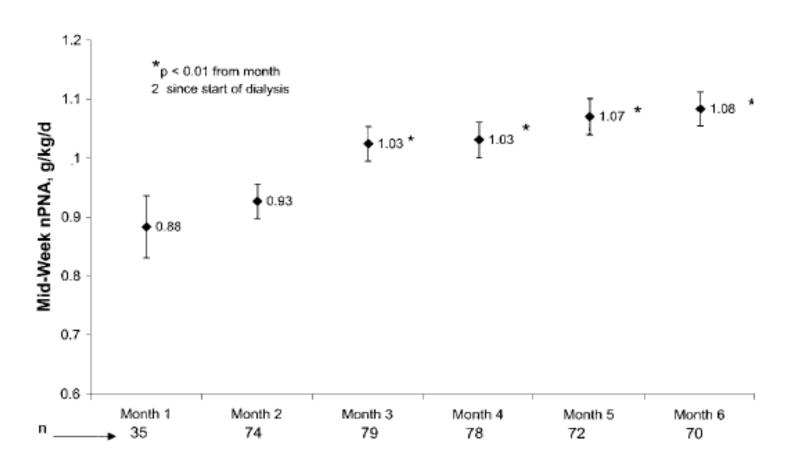


Does Home Dialysis Therapy prevents Protein-Energy Wasting?

1 **Never forget the basics! Peritoneal Dialysis versus Hemodialysis** 3 **Nutritional Effect of Alternative Hemodialysis Strategies** 4 **Nutritional Effects of HD convective therapies** Just a reminder... 6 **Take Home Message**

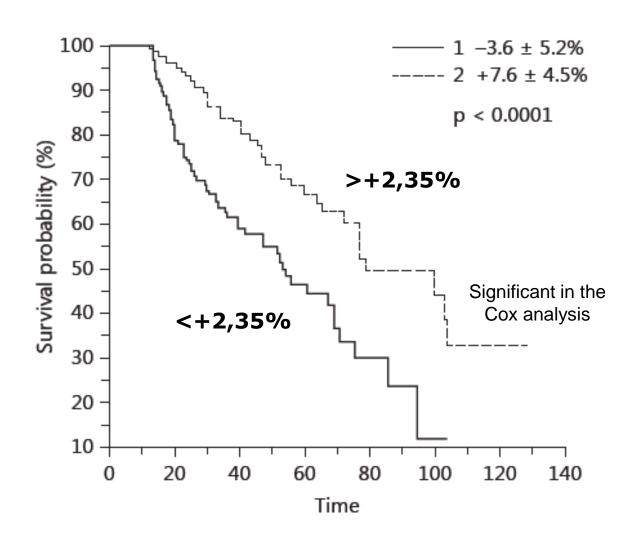

Appetite score and HD patients survival

Improvement of S Alb level with standard dialysis in incident dialysis patients



Month of follow-up since start of dialysis

Retrospective study in 97 incident patients


Improvement of protein intake with standard dialysis in incident dialysis patients

Month of follow-up since start of dialysis

Survival in incident HD patients Effect of Target Weight change in the 1 year of HD therapy

Blood access and nutritional parameters

12501 patients 23% with a permanent catheter

	All	AVF	AVG	CVC
Patients	12,501	4,486	5,181	2,834
Ferritin, ng/ml	719 ± 445	725 ± 439	731 ± 448	688 ± 450
Transferrin saturation, %	30 ± 13	31 ± 13	30 ± 13	30 ± 15
Hemoglobin, g/dl	12.0 ± 1.4	12.0 ± 1.3	12.0 ± 1.5	11.9 ± 1.4
EPO, units/kg/week	246 ± 235	221 ± 211	247 ± 237	283 ± 261
URR, %	73.0 ± 6.6	72.8 ± 6.2	74.0 ± 5.9	71.4 ± 7.8
Kt/V	1.55 ± 0.31	1.53 ± 0.29	1.59 ± 0.32	1.51 ± 0.34
Albumin, g/dl	3.8 ± 0.5	3.9 ± 0.4	3.9 ± 0.4	3.7 ± 0.5

Patients with a permanent catheter: significant lower SAlb level after adjustment for blood access type, age, vintage, KT/V, race

A native fistula will help the patient even in nutrition (better dialysis delivery, less inflammation,...)

Relationship between dialysis dose and food intake

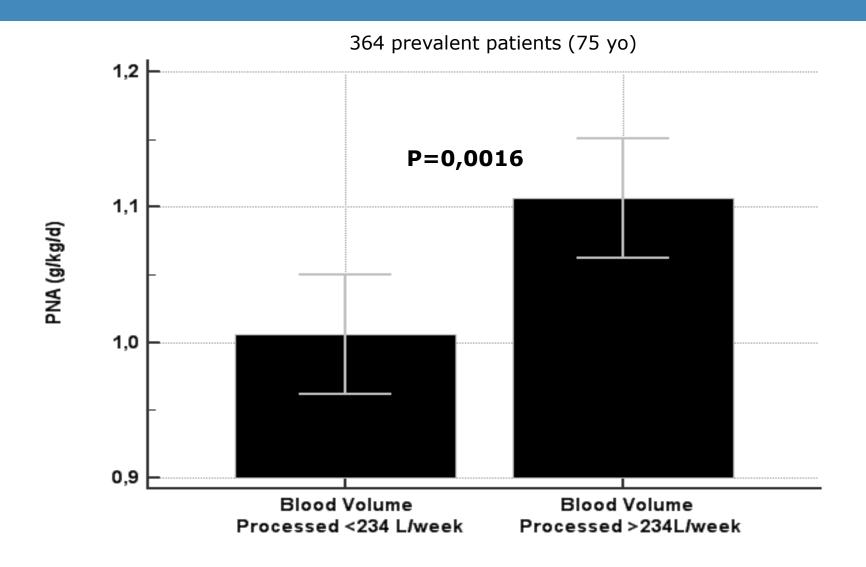

50 patients with Urea Monitor® and 7-day food records

Table 3. Analysis of variance, residual *F*-test between Kt/V, nPCR, DPI and calorie intake.

<i>K</i> _v / <i>V</i> U. M.	K _t /V 2	nPCR	DPI	Calories
K _t /V U. M. K _t /V 2 nPCR DPI	0.001	0.0001 0.01	0.002 0.09 0.0001	0.006 0.2 0.003 0.0001

No mathematical flaw....

nPNA according to the Processed Blood Volume

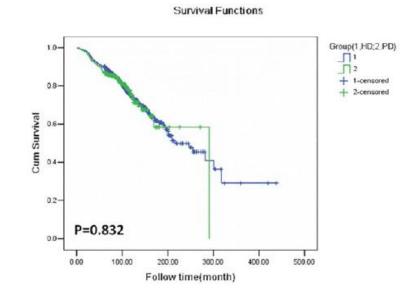


Dialysis parameters and nPNA

	nPCR>1	.,0 g/kg/d	nPCR>1	,2 g/kg/d
Variable	AUC	Criterion	AUC	Criterion
Proc. BV	0,624	>203 I/week	0,606	>228 I/week
Weekly TT	0,630	>701 min	0,620	>768 min
ОСМ	0,573	>1,49	0,568	>1,62

Fluid excess may impair appetite and nutritional status

- La dose de dialyse
- L'abord vasculaire
- Le contrôle de l'hydratation


Préalables à un état nutritionnel correct

Does Home Dialysis Therapy prevents Protein-Energy Wasting?

Never forget the basics! 2 Peritoneal Dialysis versus Hemodialysis 3 **Nutritional Effect of Alternative Hemodialysis Strategies** 4 **Nutritional Effects of HD convective therapies** Just a reminder... 6 **Take Home Message**

Standard HD versus PD The Chinese-Italian cohort study

- 509 HD vs 410 PD
- Shangai and Vicenza Renal Registries
- 2009-2013
- Retrospective study
- Mean data during the 5-year follow-up
- Switched or Transplanted patients excluded

	HD (n = 509)	PD (n = 410)
HCO ₃ (mmol/L)	21.68 ± 4.03	25.48 ± 4.44#
CRP (mg/l)	3.0 (0.91,12.56)	3.93 (0.84,22.23) #
Total cholesterol (mmol/L	4.21 ± 1.07	4.81 ± 1.26#
Albumin (g/L)	39.27 ± 11.24	37.56 ± 5.16#

Home Short Daily HD versus PD therapy

2x4201 matched incident patients H SD HD vs PD NxStage....

		Α	II Patients	
Intention to Treat	Daily HHD	PD	RR ^a (95% CI)	P
Cachexia/dialysis withdrawal	1.4	2.1	0.62 (0.48-0.80)	<0.001
Cachexia/dialysis withdrawal	1.3	1.9	0.68 (0.50-0.93)	0.02

Cachexia refers to Nutrition?: Unclear...

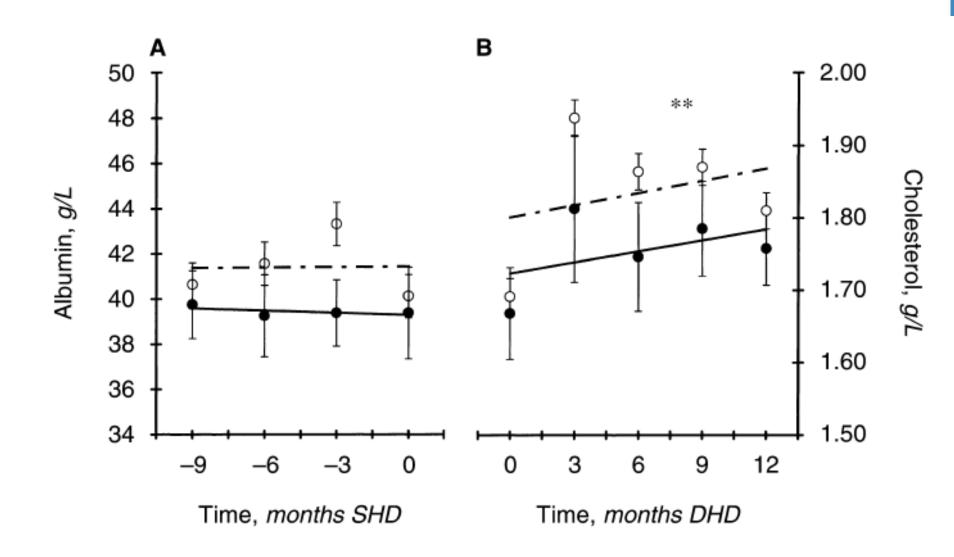
On Treatment

PD versus Daily Home HD

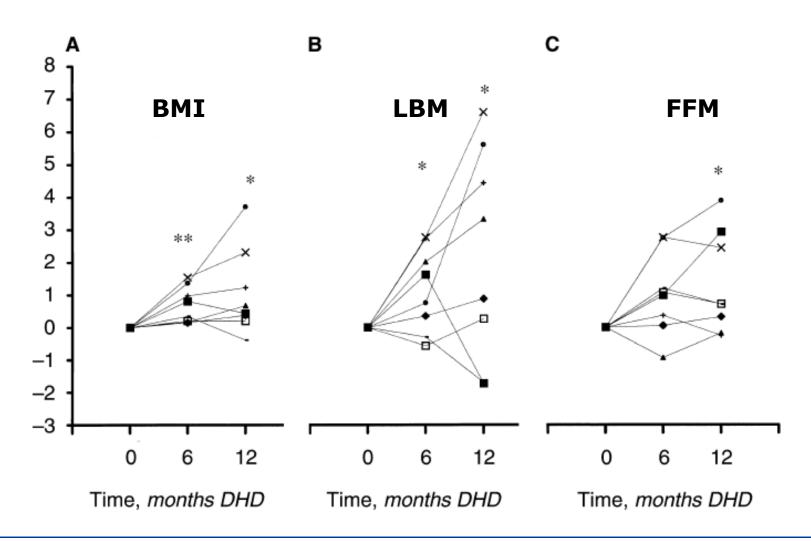
- 41 PD vs 47 Home HD patients (Standard Thrice Weekly?)
- Cross-sectional Bioimpedance study
- Extracellular fluid excess significantly higher in PD vs
 Home HD patients (46 vs 21%)
- No difference on malnutrition criteria in PD vs Home HD patients

Does Home Dialysis Therapy prevents Protein-Energy Wasting?

Never forget the basics! Peritoneal Dialysis versus Hemodialysis 3 **Nutritional Effect of Alternative Hemodialysis Strategies** 4 **Nutritional Effects of HD convective therapies** Just a reminder... 6 **Take Home Message**

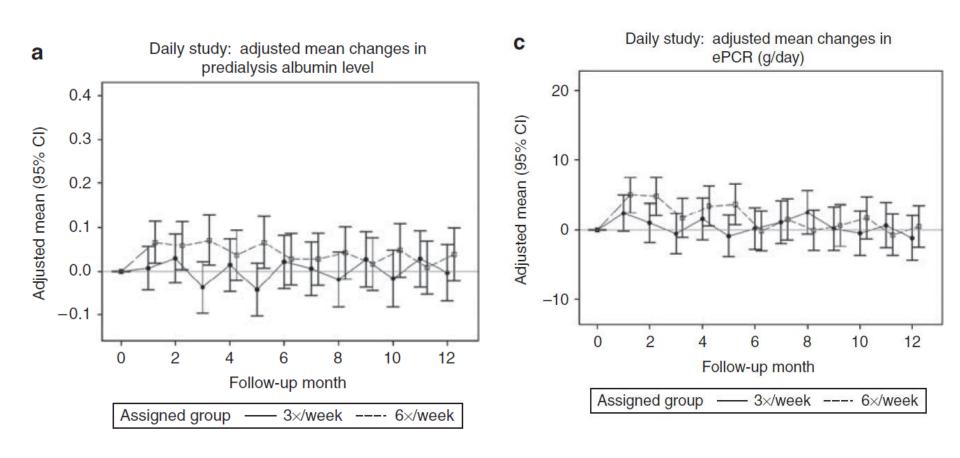

What is longer and/or more frequent hemodialysis?

- The « Tassin » or « Izmir » model: 6-8 hours x3/week (Charra KI 1992; Ok NDT 2011; Lacson cJASN 2010)
- The Alternate dialysis model: 8h X 3.5 times/week (Kerr Sem Dial 2011)
- Daily long nocturnal model : 6-8 h x5-6/week (Pierratos KI 2004;
 Rocco FHN KI 2011)
- Short Daily model: 2hx6/week (Galland KI 2004, Chertow FHN NEJM 2010)
- Extra-session per week: common practice
- Individualized therapy



Daily Short HD

Switch from conventional to daily short hemodialysis (1)


Switch from conventional to daily short hemodialysis (3)

Frequent Hemodialysis Network (FHN trial #1) In-Center Daily Trial: Nutritional impact

RCT: 120 (standard) versus 125 (frequent short daily)

No effect on BW or BIA parameters

Thrice Weekly Long (Nocturnal) (Home) Hemodialysis

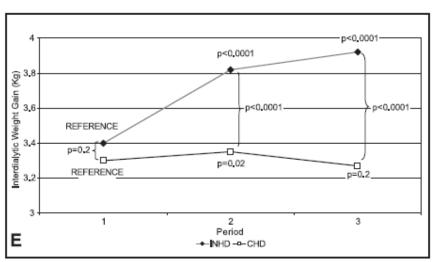
The Long Dialysis Study

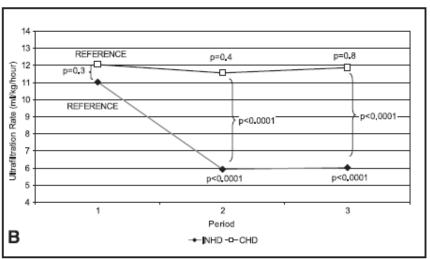
Prospective case-control study

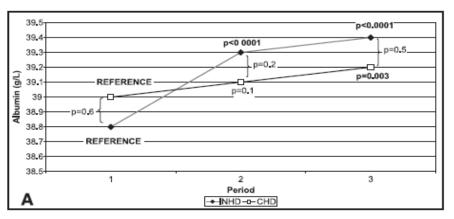
In-Center 3x7-8h versus In-Center 3x3.5-4.5h hemodialysis therapy

2x247 patients with matching from 35 criteria

72			
	Nocturnal HD $(n = 227)^{a}$	Conventional HD $(n = 242)^{a}$	P-value
Nutritional status			
Post-dialysis body weight (kg)	66.6 ± 14.4	65.2 ± 14.3	0.32
Albumin (g/dL)	4.02 ± 0.24	3.94 ± 0.29	0.001
Total cholesterol (mg/dL)	174 ± 41	165 ± 42	0.03
Triglyceride (mg/dL)	209 ± 136	184 ± 117	0.04
HDL cholesterol (mg/dL)	46 ± 11	43 ± 10	0.07
LDL cholesterol (mg/dL)	87 ± 29	85 ± 30	0.70
hs-CRP (mg/dL)	1.40 ± 1.37	1.67 ± 1.71	0.06
Bicarbonate (mEq/L)	23.8 ± 1.7	23.1 ± 1.8	< 0.001

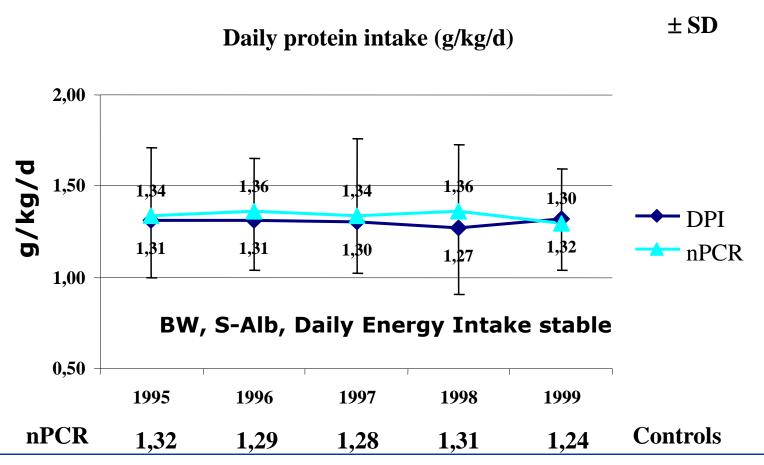

Switch from conventional to thrice-weekly In-Center nocturnal HD in FMC North-America


746 versus 2062 patients (471 vs 226 min)


IDWG

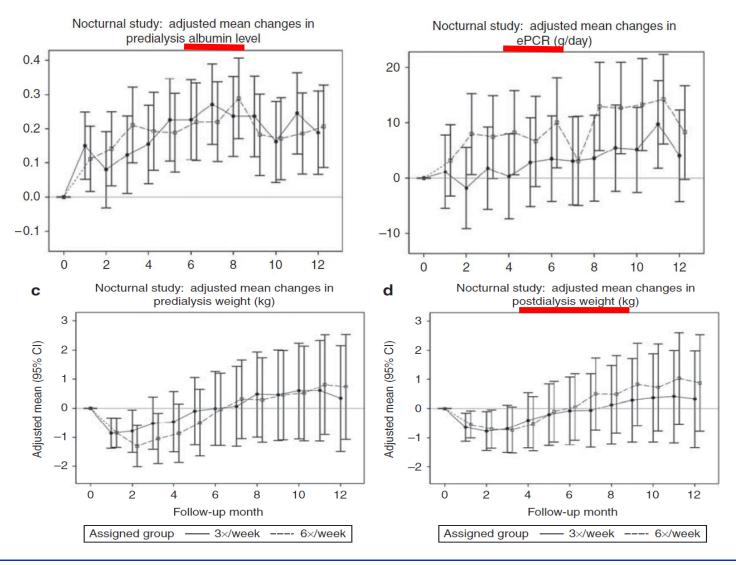
Propensity-score analysis

UF rate



S-Alb

Nutritional stability with long-hour HD


5-year follow-up of 53 patients treated with 3x 6-8 hours/week 33 have yearly dietary records - 20 are controls

Daily Nocturnal Home Hemodialysis FHN trial #2

Frequent Hemodialysis Network Daily Home Nocturnal Trial: Nutritional impact

Meta-Analysis on nutritional effect of nocturnal HD

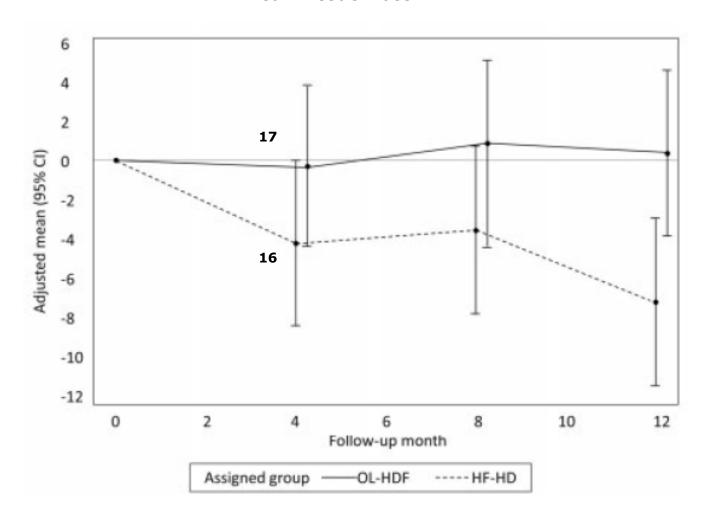
Author	Duration of studies (months)	No. NHD patients	Men (n)	Mean age (years) mean±SD	In-centre /home NHD	Duration of NHD treatment	Study design	Single centre y/n	Control group y/n	Meta analysisy/n	Study quality
Alloatti,2002	>6	13	12 (92.3%)	52.0±13.0	In-centre	3 times/week for 8 hours	prospective	Υ	N	N	4
Cravedi,2009	24	7	6 (85.7%)	50.4±11.0	In-centre	3 times/week for 8 hours	retrospective	Υ	N	Υ	5
David,2009	12	13	11 (84.6%)	34.8±13.7	In-centre	3 times/week for 8 hours	prospectivelongitudinal	Υ	N	Υ	5
Demirci,2013	12	57	41 (71.9%)	47.1±11.7	In-centre	3 times/week for 8 hours	prospective cohort trial	N	Υ	Υ	7
Ipema,2012	8	15	11 (73.3%)	53.4±10.3	Home	5/6 times/week for 8 hours	prospective observational	Υ	N	Υ	5
Kaysen,2012	12	87	57 (65.5%)		Home		prospective randomized trial	N	Υ	Υ	8
		42	28 (66.7%)	54.0±12.9		$\begin{array}{c} \text{3 times/} \\ \text{week} \geq 2.5 \\ \text{hours} \end{array}$					
		45	29 (64.4%)	51.7±14.4		6 times/ week \geq 6 hours					
Maduel,2011	12	26	18 (69.2%)	49.2±14.0	In-centre		crossover prospective	Υ	N	N	8
McPhatter,1999	18	11	5 (45.5%)	50.0±na	Home	5–6 times/week for 4–9 hours	prospectiveobservational	Υ	N	N	5
O'Sullivan, 1998	2	5	3 (60%)	46,6±na	In-centre	6 times/week for 8 hours	pilot study	Υ	N	N	3
Pierratos,1997	36	11	8 (72.7%)	40±10.0	Home	6–7 times/week for 8–10 hours	prospective	Υ	N	Υ	5
Schorr,2011	6	12	6 (50%)	54,2±13.0	Home	5–6 times/week for≥ 6 hours	randomized trial	Υ	Υ	Υ	7
Sikkes,2009	12	14	13 (92.9%)	47.0±7.8	Home	6 times/week for 8 hours	prospective non- randomized	Υ	N	Υ	5
Spanner,2003	18	13	10 (76.9%)	44,2±6.4	Home	5–6 times/week for 6–8 hours	prospective controlled non- randomized	N	Υ	Υ	7

FRESENIUS MEDICAL CARE

Nutritional parameters

Studies on Albumin	. 8.577.00.00				nths C	The state of	Mean difference	D 95%-C	I W(random)
Studies on Albumin	IOtal	mean	30	Iotai	mean	30	1 : "	D 3376-C	v (randoni)
Demirci (2013)	57	41.4	3.1	55	39.2	2.7	2.3	20 [1.12; 3.28]	57.6%
Kaysen (6x) (2012)	45	40.8	5.3	120	39.6	4.0		0 [-0.51; 2.91	
Spanner (2003)	9				38.1	4.1		0 [-4.94; 2.74	•
Random effects model	111			195			1.6	7 [0.39; 2.76	100%
Heterogeneity: I-squared=3	7.2%, ta	u-squar	red=0	.3361,	p=0.2035	5			50
	,	,					T		

8-12 M	ontns	NHD		Bas	eline	Mean difference			
Total	Mean	SD	Total	Mean	SD	1:	MD	95%-CI	W(random)
42	1.09	0.25	42	0.99	0.23	Li	0.10	[0.00; 0.20]	41.2%
45	1.12	0.30	45	0.98	0.28	-		•	30.3%
15	1.30	0.19	15	1.07	0.27	- 50 -	0.23	[0.06; 0.40]	15.6%
7	1.10	0.30	7	0.90	0.30	+	0.20	[-0.11; 0.51]	4.4%
14	1.50	0.48	14	1.11	0.41		0.39	[0.06; 0.72]	4.0%
8	1.16	0.45	12	1.03	0.21	 	0.13	[-0.20; 0.46]	3.9%
13	2.25	1.50	13	1.39	0.29	-	- 0.86	[0.03; 1.69]	0.6%
1 144			148				0.15	[0.09; 0.22]	100%
11%, tau-	square	d<0.00	01, p=0	.3452					
	Total 42 45 15 7 14 8 13	Total Mean 42 1.09 45 1.12 15 1.30 7 1.10 14 1.50 8 1.16 13 2.25	42 1.09 0.25 45 1.12 0.30 15 1.30 0.19 7 1.10 0.30 14 1.50 0.48 8 1.16 0.45 13 2.25 1.50	Total Mean SD Total 42 1.09 0.25 42 45 1.12 0.30 45 15 1.30 0.19 15 7 1.10 0.30 7 14 1.50 0.48 14 8 1.16 0.45 12 13 2.25 1.50 13	Total Mean SD Total Mean 42 1.09 0.25 42 0.99 45 1.12 0.30 45 0.98 15 1.30 0.19 15 1.07 7 1.10 0.30 7 0.90 14 1.50 0.48 14 1.11 8 1.16 0.45 12 1.03 13 2.25 1.50 13 1.39	Total Mean SD Total Mean SD 42 1.09 0.25 42 0.99 0.23 45 1.12 0.30 45 0.98 0.28 15 1.30 0.19 15 1.07 0.27 7 1.10 0.30 7 0.90 0.30 14 1.50 0.48 14 1.11 0.41 8 1.16 0.45 12 1.03 0.21 13 2.25 1.50 13 1.39 0.29	Total Mean SD Total Mean SD 42 1.09 0.25 42 0.99 0.23 45 1.12 0.30 45 0.98 0.28 15 1.30 0.19 15 1.07 0.27 7 1.10 0.30 7 0.90 0.30 14 1.50 0.48 14 1.11 0.41 8 1.16 0.45 12 1.03 0.21 13 2.25 1.50 13 1.39 0.29	Total Mean SD Total Mean SD 42 1.09 0.25 42 0.99 0.23 45 1.12 0.30 45 0.98 0.28 15 1.30 0.19 15 1.07 0.27 7 1.10 0.30 7 0.90 0.30 14 1.50 0.48 14 1.11 0.41 8 1.16 0.45 12 1.03 0.21 13 2.25 1.50 13 1.39 0.29 MD 0.10 0.10 0.10 0.10 0.11 0.13 0.14 0.15	Total Mean SD Total Mean SD 42 1.09 0.25 42 0.99 0.23 45 1.12 0.30 45 0.98 0.28 15 1.30 0.19 15 1.07 0.27 7 1.10 0.30 7 0.90 0.30 14 1.50 0.48 14 1.11 0.41 8 1.16 0.45 12 1.03 0.21 13 2.25 1.50 13 1.39 0.29 MD 95%-CI 0.10 [0.00; 0.20] 0.14 [0.02; 0.26] 0.23 [0.06; 0.40] 0.20 [-0.11; 0.51] 0.39 [0.06; 0.72] 0.13 [-0.20; 0.46] 0.86 [0.03; 1.69]


Does Home Dialysis Therapy prevents Protein-Energy Wasting?

Never forget the basics! Peritoneal Dialysis versus Hemodialysis 3 **Nutritional Effect of Alternative Hemodialysis Strategies** 4 **Nutritional Effects of HD convective therapies** Just a reminder... 6 **Take Home Message**

On the basis of improved toxin removal, a potential benefit of OL-HDF on nutritional status has been postulated [15–17]. However, evidence on the effect of OL-HDF on nutritional status is scarce and at times conflicting (18). Some observational and interventional studies have suggested that OL-HDF is associated with improved nutritional parameters [6, 7, 11, 19–22], while others have found no effect [23–29], and one study even reported negative effects of OL-HDF on nutritional status [30].

Switch from HF-HD to High Volume OL-HDF Nutrition parameters at one year

Lean Tissue Mass

- Convective Therapies at Home?
- Not legally possible in France at the moment

Page 39

Does Home Dialysis Therapy prevents Protein-Energy Wasting?

Never forget the basics! Peritoneal Dialysis versus Hemodialysis 3 **Nutritional Effect of Alternative Hemodialysis Strategies** 4 **Nutritional Effects of HD convective therapies** 5 Just a reminder... 6 **Take Home Message**

Nutritional supplement during the dialysis session

Non-randomized controlled study in 41 HD patients with albuminemia < 38g/L Antioxydant & anti-inflammatory specific oral supplement, 830 Kcal + 33,5 g of protein at each dialysis for 4 weeks

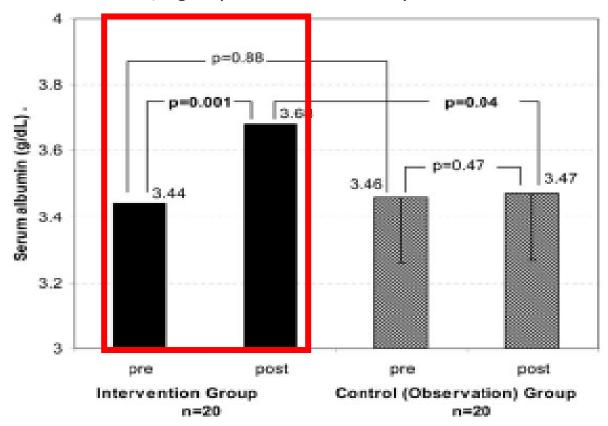
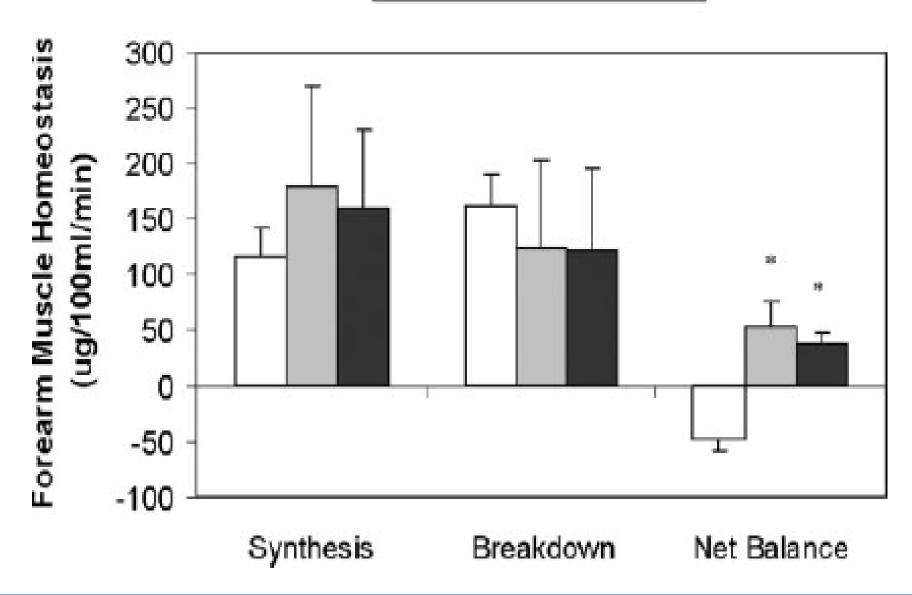
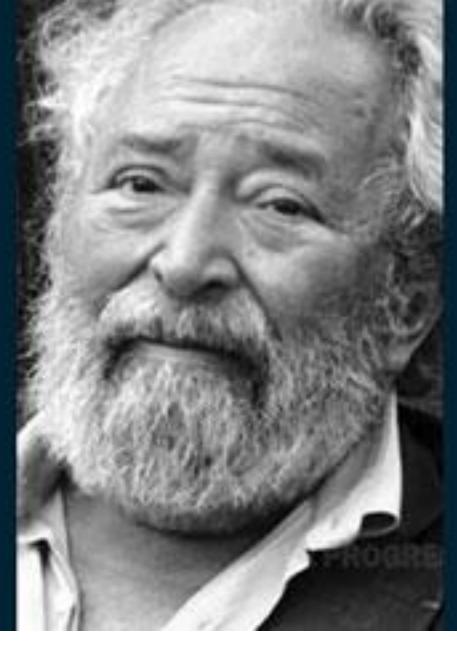



Figure 1. Serum albumin changes in both groups of hypoalbuminemic MHD patients.


Does Home Dialysis Therapy prevents Protein-Energy Wasting?

Never forget the basics! Peritoneal Dialysis versus Hemodialysis 3 **Nutritional Effect of Alternative Hemodialysis Strategies** 4 **Nutritional Effects of HD convective therapies** Just a reminder... **Take Home Message** 6

Take Home Message

- Never forget the basics: no good nutrition without good dialysis
 See the home-treated patients often...!!!
- Home PD or Home HD: no evidence for better nutritional status whatever the method
- Short daily in-center or home HD (FHN trial #1): no evidence for better nutritional status
- Nocturnal home HD: Some evidence for better nutritional status
- Convective therapies: controversial. More stable Lean Body mass to be confirmed
- Utmost importance for the patient to be fed during dialysis therapy, even at home?

This presentation is dedicated to Dr Guy Laurent, founder of the Tassin Dialysis Unit

